![]() |
CosmoBolognaLib
Free Software C++/Python libraries for cosmological calculations
|
The namespace of the two-point correlation function modelling More...
Functions | |
std::vector< double > | true_k_mu_AP (const double kk, const double mu, const double alpha_perp, const double alpha_par) |
true k and \(\mu\) power spectrum coordinates as a function of observed ones More... | |
double | Pk_l (const double kk, const int l, const std::string model, const std::vector< double > parameter, const std::vector< std::shared_ptr< glob::FuncGrid >> pk_interp, const double prec=1.e-5, const double alpha_perp=1., const double alpha_par=1.) |
the multipole of order l of the power spectrum More... | |
std::vector< double > | Pk_l (const std::vector< double > kk, const int l, const std::string model, const std::vector< double > parameter, const std::vector< std::shared_ptr< glob::FuncGrid >> pk_interp, const double prec=1.e-5, const double alpha_perp=1., const double alpha_par=1.) |
the multipole of order l of the power spectrum More... | |
cbl::glob::FuncGrid | Xil_interp (const std::vector< double > kk, const int l, const std::string model, const std::vector< double > parameter, const std::vector< std::shared_ptr< glob::FuncGrid >> pk_interp, const double prec=1.e-5, const double alpha_perp=1., const double alpha_par=1.) |
the interpolating function of multipole expansion of the two-point correlation function at a given order l More... | |
std::vector< std::vector< double > > | Xi_l (const std::vector< double > rr, const int nmultipoles, const std::string model, const std::vector< double > parameter, const std::vector< std::shared_ptr< glob::FuncGrid >> pk_interp, const double prec=1.e-5, const double alpha_perp=1., const double alpha_par=1.) |
the multipole of order l of the two-point correlation function More... | |
std::vector< double > | Xi_l (const std::vector< double > rr, const std::vector< int > dataset_order, const std::vector< bool > use_pole, const std::string model, const std::vector< double > parameter, const std::vector< std::shared_ptr< glob::FuncGrid >> pk_interp, const double prec=1.e-5, const double alpha_perp=1., const double alpha_par=1.) |
the multipole of order l of the two-point correlation function More... | |
std::vector< std::vector< double > > | Xi_rppi (const std::vector< double > rp, const std::vector< double > pi, const std::string model, const std::vector< double > parameter, const std::vector< std::shared_ptr< glob::FuncGrid >> pk_interp, const double prec=1.e-5, const double alpha_perp=1., const double alpha_par=1.) |
the cartesian two-point correlation function More... | |
double | Xi_polar (const double rad_fid, const double mu_fid, const double alpha_perpendicular, const double alpha_parallel, const std::vector< std::shared_ptr< cbl::glob::FuncGrid >> xi_multipoles) |
the polar two-point correlation function More... | |
std::vector< double > | wp_from_Xi_rppi (const std::vector< double > rp, const double pimax, const std::string model, const std::vector< double > parameter, const std::vector< std::shared_ptr< glob::FuncGrid >> pk_interp, const double prec=1.e-5, const double alpha_perp=1., const double alpha_par=1.) |
the projected two-point correlation function More... | |
std::vector< std::vector< double > > | damped_Pk_terms (const std::vector< double > kk, const double linear_growth_rate, const double SigmaS, const std::shared_ptr< cbl::glob::FuncGrid > PkDM) |
the power spectrum terms obtained integrating the redshift space 2D power spectrum More... | |
std::vector< double > | damped_Xi (const std::vector< double > ss, const double bias, const double linear_growth_rate, const double SigmaS, const std::vector< double > kk, const std::shared_ptr< cbl::glob::FuncGrid > PkDM) |
the damped two-point correlation monopole; from Sereno et al. 2015 More... | |
double | Pkmu (const double kk, const double mu, const std::string model, const std::vector< double > parameter, const std::vector< std::shared_ptr< glob::FuncGrid >> pk_interp, const double alpha_perp=1., const double alpha_par=1.) |
the power spectrum as a function of k and \(\mu\) More... | |
double | Pkmu_DeWiggled (const double kk, const double mu, const double sigmaNL_perp, const double sigmaNL_par, const double linear_growth_rate, const double bias, const double SigmaS, const std::shared_ptr< cbl::glob::FuncGrid > Pk, const std::shared_ptr< cbl::glob::FuncGrid > Pk_NW) |
the redshift-space galaxy power spectrum, as a function of \(k\) and \(\mu\), predicted by the de-wiggled model More... | |
double | Pkmu_ModeCoupling (const double kk, const double mu, const double linear_growth_rate, const double bias, const double sigmav, const double AMC, const std::shared_ptr< cbl::glob::FuncGrid > PkLin, const std::shared_ptr< cbl::glob::FuncGrid > PkMC) |
the redshift-space galaxy power spectrum, as a function of \(k\) and \(\mu\), predicted by the mode-coupling model More... | |
double | Pkmu_dispersion (const double kk, const double mu, const std::string DFoG, const double linear_growth_rate, const double bias, const double sigmav, const std::shared_ptr< cbl::glob::FuncGrid > Pklin) |
the redshift-space galaxy power spectrum, as a function of \(k\) and \(\mu\), predicted by the dispersion model More... | |
double | Pkmu_Scoccimarro (const double kk, const double mu, const std::string DFoG, const double linear_growth_rate, const double bias, const double sigmav, const std::shared_ptr< cbl::glob::FuncGrid > Pk_DeltaDelta, const std::shared_ptr< cbl::glob::FuncGrid > Pk_DeltaTheta, const std::shared_ptr< cbl::glob::FuncGrid > Pk_ThetaTheta) |
the redshift-space galaxy power spectrum, as a function of \(k\) and \(\mu\), predicted by the Scoccimarro model More... | |
double | Pkmu_Scoccimarro_fitPezzotta (const double kk, const double mu, const std::string DFoG, const double linear_growth_rate, const double bias, const double sigmav, const double kd, const double kt, const std::shared_ptr< cbl::glob::FuncGrid > Pklin, const std::shared_ptr< cbl::glob::FuncGrid > Pknonlin) |
the redshift-space galaxy power spectrum, as a function of \(k\) and \(\mu\), predicted by the Scoccimarro model More... | |
double | Pkmu_Scoccimarro_fitBel (const double kk, const double mu, const std::string DFoG, const double linear_growth_rate, const double bias, const double sigmav, const double kd, const double bb, const double a1, const double a2, const double a3, const std::shared_ptr< cbl::glob::FuncGrid > Pklin, const std::shared_ptr< cbl::glob::FuncGrid > Pknonlin) |
the redshift-space galaxy power spectrum, as a function of \(k\) and \(\mu\), predicted by the Scoccimarro model More... | |
double | Pkmu_TNS (const double kk, const double mu, const std::string DFoG, const double linear_growth_rate, const double bias, const double sigmav, const std::shared_ptr< cbl::glob::FuncGrid > Pk_DeltaDelta, const std::shared_ptr< cbl::glob::FuncGrid > Pk_DeltaTheta, const std::shared_ptr< cbl::glob::FuncGrid > Pk_ThetaTheta, const std::shared_ptr< cbl::glob::FuncGrid > Pk_A11, const std::shared_ptr< cbl::glob::FuncGrid > Pk_A12, const std::shared_ptr< cbl::glob::FuncGrid > Pk_A22, const std::shared_ptr< cbl::glob::FuncGrid > Pk_A23, const std::shared_ptr< cbl::glob::FuncGrid > Pk_A33, const std::shared_ptr< cbl::glob::FuncGrid > Pk_B12, const std::shared_ptr< cbl::glob::FuncGrid > Pk_B13, const std::shared_ptr< cbl::glob::FuncGrid > Pk_B14, const std::shared_ptr< cbl::glob::FuncGrid > Pk_B22, const std::shared_ptr< cbl::glob::FuncGrid > Pk_B23, const std::shared_ptr< cbl::glob::FuncGrid > Pk_B24, const std::shared_ptr< cbl::glob::FuncGrid > Pk_B33, const std::shared_ptr< cbl::glob::FuncGrid > Pk_B34, const std::shared_ptr< cbl::glob::FuncGrid > Pk_B44) |
the redshift-space galaxy power spectrum, as a function of \(k\) and \(\mu\), predicted by the TNS (Taruya, Nishimichi and Saito) model More... | |
double | Pkmu_eTNS (const double kk, const double mu, const std::string DFoG, const double linear_growth_rate, const double bias, const double bias2, const double sigmav, const double Ncorr, const std::shared_ptr< cbl::glob::FuncGrid > Pk_DeltaDelta, const std::shared_ptr< cbl::glob::FuncGrid > Pk_DeltaTheta, const std::shared_ptr< cbl::glob::FuncGrid > Pk_ThetaTheta, const std::shared_ptr< cbl::glob::FuncGrid > Pk_A11, const std::shared_ptr< cbl::glob::FuncGrid > Pk_A12, const std::shared_ptr< cbl::glob::FuncGrid > Pk_A22, const std::shared_ptr< cbl::glob::FuncGrid > Pk_A23, const std::shared_ptr< cbl::glob::FuncGrid > Pk_A33, const std::shared_ptr< cbl::glob::FuncGrid > Pk_B12, const std::shared_ptr< cbl::glob::FuncGrid > Pk_B13, const std::shared_ptr< cbl::glob::FuncGrid > Pk_B14, const std::shared_ptr< cbl::glob::FuncGrid > Pk_B22, const std::shared_ptr< cbl::glob::FuncGrid > Pk_B23, const std::shared_ptr< cbl::glob::FuncGrid > Pk_B24, const std::shared_ptr< cbl::glob::FuncGrid > Pk_B33, const std::shared_ptr< cbl::glob::FuncGrid > Pk_B34, const std::shared_ptr< cbl::glob::FuncGrid > Pk_B44, const std::shared_ptr< cbl::glob::FuncGrid > Pk_b2d, const std::shared_ptr< cbl::glob::FuncGrid > Pk_b2v, const std::shared_ptr< cbl::glob::FuncGrid > Pk_b22, const std::shared_ptr< cbl::glob::FuncGrid > Pk_bs2d, const std::shared_ptr< cbl::glob::FuncGrid > Pk_bs2v, const std::shared_ptr< cbl::glob::FuncGrid > Pk_b2s2, const std::shared_ptr< cbl::glob::FuncGrid > Pk_bs22, const std::shared_ptr< cbl::glob::FuncGrid > sigma32Pklin) |
the redshift-space galaxy power spectrum, as a function of \(k\) and \(\mu\), predicted by the extended TNS (Taruya, Nishimichi and Saito) model More... | |
std::vector< double > | xi0_BAO_sigmaNL (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
model for the BAO signal in the monopole of the two-point correlation function More... | |
std::vector< double > | xi0_linear (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
model for the monopole of the two-point correlation function More... | |
std::vector< double > | xi0_linear_LinearPoint (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
model for the monopole of the two-point correlation function More... | |
std::vector< double > | xi0_polynomial_LinearPoint (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
model for the monopole of the two-point correlation function More... | |
std::vector< double > | xi0_linear_sigma8_bias (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
model for the monopole of the two-point correlation function in redshift space More... | |
std::vector< double > | xi0_linear_cosmology (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
model for the monopole of the two-point correlation function More... | |
std::vector< double > | xi0_damped_bias_sigmaz (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
the damped two-point correlation monopole; from Sereno et al. 2015 More... | |
std::vector< double > | xi0_damped_scaling_relation_sigmaz (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
the damped two-point correlation monopole; from Sereno et al. 2015 More... | |
std::vector< double > | xi0_damped_scaling_relation_sigmaz_cosmology (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
the damped two-point correlation monopole; from Sereno et al. 2015 More... | |
std::vector< double > | xi0_linear_sigma8_clusters (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
model for the monopole of the two-point correlation function, the bias is computed by the input cluster masses, with only \(sigma_8\) as a free parameter More... | |
std::vector< double > | xi0_linear_one_cosmo_par_clusters (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
model for the monopole of the two-point correlation function, the bias is computed by the input cluster masses, with only \(sigma_8\) as a free parameter More... | |
std::vector< double > | xi0_linear_two_cosmo_pars_clusters (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
model for the monopole of the two-point correlation function, the bias is computed by the input cluster masses, with only \(sigma_8\) as a free parameter More... | |
std::vector< double > | xi0_linear_cosmology_clusters (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
model for the monopole of the two-point correlation function, the bias is computed by the input cluster masses More... | |
std::vector< double > | xi0_linear_bias_cosmology (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
model for the monopole of the two-point correlation function More... | |
std::vector< double > | xi0_linear_cosmology_clusters_selection_function (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
model for the monopole of the redshift-space two-point correlation function of galaxy clusters, considering the selection function More... | |
std::vector< std::vector< double > > | xi2D_dispersion (const std::vector< double > rp, const std::vector< double > pi, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
model for the 2D two-point correlation function, in Cartesian coordinates More... | |
std::vector< double > | xiMultipoles (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
return multipoles of the two-point correlation function More... | |
std::vector< double > | xiMultipoles_BAO (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
return multipoles of the two-point correlation function, intended for anisotropic BAO measurements (Ross et al. 2017). In only works with monopole and quadrupole. More... | |
std::vector< double > | xiMultipoles_sigma8_bias (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
return multipoles of the two-point correlation function More... | |
std::vector< std::vector< double > > | xi_Wedges (const std::vector< double > rr, const int nWedges, const std::vector< std::vector< double >> mu_integral_limits, const std::string model, const std::vector< double > parameter, const std::vector< std::shared_ptr< glob::FuncGrid >> pk_interp, const double prec=1.e-5, const double alpha_perp=1, const double alpha_par=1.) |
the model wedges of the two-point correlation function More... | |
std::vector< double > | xi_Wedges (const std::vector< double > rr, const std::vector< int > dataset_order, const std::vector< std::vector< double >> mu_integral_limits, const std::string model, const std::vector< double > parameter, const std::vector< std::shared_ptr< glob::FuncGrid >> pk_interp, const double prec=1.e-5, const double alpha_perp=1., const double alpha_par=1.) |
the wedge of the two-point correlation function More... | |
std::vector< double > | xiWedges (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
the model wedges of the two-point correlation function More... | |
std::vector< double > | xiWedges_BAO (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
return the wedges of the two-point correlation function, intended for anisotropic BAO measurements More... | |
Functions of the Halo Occupation Distribution (HOD) models | |
double | Ncen (const double Mass, const double lgMmin, const double sigmalgM) |
the average number of central galaxies hosted in a dark matter halo of a given mass More... | |
double | Nsat (const double Mass, const double lgMmin, const double sigmalgM, const double lgM0, const double lgM1, const double alpha) |
the average number of satellite galaxies hosted in a dark matter halo of a given mass More... | |
double | Navg (const double Mass, const double lgMmin, const double sigmalgM, const double lgM0, const double lgM1, const double alpha) |
the average number of galaxies hosted in a dark matter halo of a given mass More... | |
double | ng (const double lgMmin, const double sigmalgM, const double lgM0, const double lgM1, const double alpha, const std::shared_ptr< void > inputs) |
the galaxy number density More... | |
double | bias (const double Mmin, const double sigmalgM, const double M0, const double M1, const double alpha, const std::shared_ptr< void > inputs) |
the mean galaxy bias More... | |
double | NcNs (const double Mass, const double lgMmin, const double sigmalgM, const double lgM0, const double lgM1, const double alpha) |
the mean number of central-satellite galaxy pairs More... | |
double | NsNs1 (const double Mass, const double lgMmin, const double sigmalgM, const double lgM0, const double lgM1, const double alpha) |
the mean number of satellite-satellite galaxy pairs More... | |
double | Pk_cs (const double kk, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
model for the central-satellite part of the 1-halo term of the power spectrum More... | |
double | Pk_ss (const double kk, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
model for the satellite-satellite part of the 1-halo term of the power spectrum More... | |
double | Pk_1halo (const double kk, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
model for the 1-halo term of the power spectrum More... | |
double | Pk_2halo (const double kk, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
model for the 2-halo term of the power spectrum More... | |
double | Pk_HOD (const double kk, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
HOD model of the power spectrum. More... | |
std::vector< double > | xi_1halo (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
model for the 1-halo term of the monopole of the two-point correlation function More... | |
std::vector< double > | xi_2halo (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
model for the 2-halo term of the monopole of the two-point correlation function More... | |
std::vector< double > | xi_HOD (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
HOD model of the monopole of the two-point correlation function. More... | |
double | xi_zspace (FunctionVectorVectorPtrVectorRef func, const double rp, const double pi, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
function used to compute the redshift-space monopole of the two-point correlation function More... | |
double | xi_1halo_zspace (const double rp, const double pi, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
model for the 1-halo term of the redshift-space monopole of the two-point correlation function More... | |
double | xi_2halo_zspace (const double rp, const double pi, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
model for the 2-halo term of the redshift-space monopole of the two-point correlation function More... | |
double | xi_HOD_zspace (const double rp, const double pi, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
HOD model of the redshift-space monopole of the two-point correlation function. More... | |
std::vector< double > | wp_from_xi_approx (FunctionVectorVectorPtrVectorRef func, const std::vector< double > rp, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
function used to compute the projected two-point correlation function More... | |
std::vector< double > | wp_1halo_approx (const std::vector< double > rp, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
model for the 1-halo term of the projected two-point correlation function More... | |
std::vector< double > | wp_2halo_approx (const std::vector< double > rp, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
model for the 2-halo term of the projected two-point correlation function More... | |
std::vector< double > | wp_HOD_approx (const std::vector< double > rp, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
HOD model of the projected two-point correlation function. More... | |
std::vector< double > | wp_from_xi (FunctionDoubleDoubleDoublePtrVectorRef func, const std::vector< double > rp, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
function used to compute the projected two-point correlation function More... | |
std::vector< double > | wp_1halo (const std::vector< double > rp, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
model for the 1-halo term of the projected two-point correlation function More... | |
std::vector< double > | wp_2halo (const std::vector< double > rp, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
model for the 2-halo term of the projected two-point correlation function More... | |
std::vector< double > | wp_HOD (const std::vector< double > rp, const std::shared_ptr< void > inputs, std::vector< double > ¶meter) |
HOD model of the projected two-point correlation function. More... | |
The namespace of the two-point correlation function modelling
The modelling::twopt namespace contains all the functions and classes to model the two-point correlation function
double cbl::modelling::twopt::bias | ( | const double | Mmin, |
const double | sigmalgM, | ||
const double | M0, | ||
const double | M1, | ||
const double | alpha, | ||
const std::shared_ptr< void > | inputs | ||
) |
the mean galaxy bias
this function computes the mean galaxy bias (e.g. Berlind & Weinberg 2002, van den Bosch et al. 2012):
\[\bar{b}(z) = \frac{1}{\bar{n}_{gal}(z)}\int_{M_{min}}^{M_{max}} <N_{gal}|M>\, b_{halo}(M, z)\, n_{halo}(M, z) \,{\rm d}M\]
where \(\bar{n}_{gal}\) is the mean number density of galaxies, \(<N_{gal}|M>\) is the mean number of galaxies hosted in haloes of mass M, \(b_{halo}\) is the linear halo bias and the halo mass function, \(n_h(M_h, z)=dn/dM_h\), is computed by cosmology::Cosmology::mass_function
Mmin | \(M_{min}\): the mass scale at which 50% of haloes host a satellite galaxy |
sigmalgM | \(\sigma_{\log M_h}\): transition width reflecting the scatter in the luminosity-halo mass relation |
M0 | \(M_0\): the cutoff mass |
M1 | \(M_1\): the amplitude of the power law |
alpha | \(\alpha\): the slope of the power law |
inputs | pointer to the structure that contains the fixed input data used to construct the model |
Definition at line 1026 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.
std::vector< std::vector< double > > cbl::modelling::twopt::damped_Pk_terms | ( | const std::vector< double > | kk, |
const double | linear_growth_rate, | ||
const double | SigmaS, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | PkDM | ||
) |
the power spectrum terms obtained integrating the redshift space 2D power spectrum
the function returns the analytic solutions of the integral of the redshift space 2D power spectrum along \(\mu\):
\(P(k,\mu) = P_\mathrm{DM}(k) (b+f\mu^2)^2 \exp(-k^2\mu^2\sigma^2)\).
Solutions are :
\[ P'(k) = P_\mathrm{DM}(k) \frac{\sqrt{\pi}}{2 k \sigma} \mathrm{erf}(k\sigma) ; \\ P''(k) = \frac{f}{(k\sigma)^3} P_\mathrm{DM}(k) \left[\frac{\sqrt{\pi}}{2}\mathrm{erf}(k\sigma) -k\sigma\exp(-k^2\sigma^2)\right] ; \\ P'''(k) = \frac{f^2}{(k\sigma)^5}P_\mathrm{DM}(k) \left\{ \frac{3\sqrt{\pi}}{8}\mathrm{erf}(k\sigma) \right. \\ \left. - \frac{k\sigma}{4}\left[2(k\sigma)^2+3\right]\exp(-k^2\sigma^2)\right\} . \\ \]
kk | the binned wave vector modules |
linear_growth_rate | the linear growth rate |
SigmaS | streaming scale |
PkDM | dark matter power spectrum interpolator |
Definition at line 560 of file ModelFunction_TwoPointCorrelation.cpp.
std::vector< double > cbl::modelling::twopt::damped_Xi | ( | const std::vector< double > | ss, |
const double | bias, | ||
const double | linear_growth_rate, | ||
const double | SigmaS, | ||
const std::vector< double > | kk, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | PkDM | ||
) |
the damped two-point correlation monopole; from Sereno et al. 2015
The function computes the damped two-point correlation monopole:
\(\xi(s) = b^2 \xi'(s) + b \xi''(s) + \xi'''(s) \, ;\)
where b is the linear bias and the terms \(\xi'(s)\), \(\xi''(s)\), \(\xi'''(s)\) are the Fourier anti-transform of the power spectrum terms obtained integrating the redshift space 2D power spectrum along \(\mu\) (see cbl::modelling::twopt.:damped_Pk_terms).
ss | vector of scales |
bias | the linear bias |
linear_growth_rate | the linear growth rate |
SigmaS | streaming scale |
kk | the binned wave vector modules |
PkDM | dark matter power spectrum interpolator |
Definition at line 583 of file ModelFunction_TwoPointCorrelation.cpp.
double cbl::modelling::twopt::Navg | ( | const double | Mass, |
const double | lgMmin, | ||
const double | sigmalgM, | ||
const double | lgM0, | ||
const double | lgM1, | ||
const double | alpha | ||
) |
the average number of galaxies hosted in a dark matter halo of a given mass
the function computes the average number of galaxies hosted in a dark matter halo of mass \(M_h\) as follows:
\[N_{gal}(M_h)\equiv<N_{gal}|M_h> = <N_{cen}|M_h> + <N_{sat}|M_h>\]
where \(<N_{cen}|M_h>\) and \(<N_{sat}|M_h>\) are computed by cbl::modelling::twopt::Ncen and cbl::modelling::twopt::Nsat, respectively
Mass | the mass of the hosting dark matter halo |
lgMmin | \(logM_{min}\): the the logarithm of the mass scale at which 50% of haloes host a satellite galaxy |
sigmalgM | \(\sigma_{\log M_h}\): transition width reflecting the scatter in the luminosity-halo mass relation |
lgM0 | \(logM_0\): the logarithm of the cutoff mass |
lgM1 | \(logM_1\): the logarithm of the amplitude of the power law |
alpha | \(\alpha\): the the slope of the power law |
Definition at line 1000 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.
double cbl::modelling::twopt::Ncen | ( | const double | Mass, |
const double | lgMmin, | ||
const double | sigmalgM | ||
) |
the average number of central galaxies hosted in a dark matter halo of a given mass
this function computes the average number of central galaxies hosted in a dark matter halo of mass \(M_h\) as follows (Harikane et al. 2017; see also e.g. Zheng et al. 2005 for a similar formalism):
\[N_{cen}(M_h)\equiv<N_{cen}|M_h>=\frac{1}{2}\left[1+{\rm erf}\left(\frac{\log M_h-\log M_{min}}{\sqrt{2}\sigma_{\log M_h}}\right)\right]\]
Mass | the mass of the hosting dark matter halo |
lgMmin | \(logM_{min}\): the logarithm of the mass scale at which 50% of haloes host a central galaxy |
sigmalgM | \(\sigma_{\log M_h}\): transition width reflecting the scatter in the luminosity-halo mass relation |
Definition at line 980 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.
double cbl::modelling::twopt::NcNs | ( | const double | Mass, |
const double | lgMmin, | ||
const double | sigmalgM, | ||
const double | lgM0, | ||
const double | lgM1, | ||
const double | alpha | ||
) |
the mean number of central-satellite galaxy pairs
this function computes the mean number of central-satellite galaxy pairs, \(<N_{cen}N_{sat}>(M_h)\), as follows:
\[<N_{cen}N_{sat}>(M_h)=N_{cen}(M_h)N_{sat}(M_h)\]
where the average number of central and satellite galaxies, \(N_{cen}\) and \(N_{sat}\) are computed by cbl::modelling::twopt::Ncen and cbl::modelling::twopt::Nsat, respectively
Mass | the mass of the hosting dark matter halo |
lgMmin | \(logM_{min}\): the logarithm of the mass scale at which 50% of haloes host a satellite galaxy |
sigmalgM | \(\sigma_{\log M_h}\): transition width reflecting the scatter in the luminosity-halo mass relation |
lgM0 | \(logM_0\): the logarithm of the cutoff mass |
lgM1 | \(logM_1\): the logarithm of the amplitude of the power law |
alpha | \(\alpha\): the slope of the power law |
Definition at line 1053 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.
double cbl::modelling::twopt::ng | ( | const double | lgMmin, |
const double | sigmalgM, | ||
const double | lgM0, | ||
const double | lgM1, | ||
const double | alpha, | ||
const std::shared_ptr< void > | inputs | ||
) |
the galaxy number density
this function computes the galaxy number density as follows:
\[n_{gal}(z) = \int_{logM_{min}}^{logM_{max}}n_{h, interp}(M_h, z)N_{gal} (M_h)M_hln(10)\,{\rm d}log(M_h)\]
where \(n_{h, interp}(M_h, z)\) is an interpolation of the halo mass function cosmology::Cosmology::mass_function, and the average number of galaxies hosted in a dark matter halo of a given mass, \(N_{gal}(M_h)\), is computed by cbl::modelling::twopt::Navg
The equation above was obtained from the original expression for \(n_{gal}(z)\) using a change of variable from \(dM_h\) to \(dlogM_h\). The original expression for \(n_{gal}(z)\) is the following:
\[n_{gal}(z) = \int_0^{M_{max}}n_h(M_h, z)N_{gal}(M_h)\,{\rm d}M_h\]
lgMmin | \(logM_{min}\): the logarithm of the mass scale at which 50% of haloes host a satellite galaxy |
sigmalgM | \(\sigma_{\log M_h}\): transition width reflecting the scatter in the luminosity-halo mass relation |
lgM0 | \(logM_0\): the logarithm of the cutoff mass |
lgM1 | \(logM_1\): the logarithm of the amplitude of the power law |
alpha | \(\alpha\): the slope of the power law |
inputs | pointer to the structure that contains the fixed input data used to construct the model |
Definition at line 1009 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.
double cbl::modelling::twopt::Nsat | ( | const double | Mass, |
const double | lgMmin, | ||
const double | sigmalgM, | ||
const double | lgM0, | ||
const double | lgM1, | ||
const double | alpha | ||
) |
the average number of satellite galaxies hosted in a dark matter halo of a given mass
this function computes the average number of satellite galaxies hosted in a dark matter halo of mass \(M_h\) as follows (Harikane et al. 2017; see also e.g. Zheng et al. 2005 for a similar formalism):
\[N_{sat}(M_h)\equiv<N_{sat}|M_h> = N_{cen}(M_h)\left(\frac{M_h-M_0}{M_1}\right)^\alpha\]
where \(N_{cen}\) is computed by cbl::modelling::twopt::Ncen
Mass | the mass of the hosting dark matter halo |
lgMmin | \(logM_{min}\): the logarithm of the mass scale at which 50% of haloes host a satellite galaxy |
sigmalgM | \(\sigma_{\log M_h}\): transition width reflecting the scatter in the luminosity-halo mass relation |
lgM0 | \(logM_0\): the the logarithm of the cutoff mass |
lgM1 | \(logM_1\): the the logarithm of the amplitude of the power law |
alpha | \(\alpha\): the slope of the power law |
Definition at line 990 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.
double cbl::modelling::twopt::NsNs1 | ( | const double | Mass, |
const double | lgMmin, | ||
const double | sigmalgM, | ||
const double | lgM0, | ||
const double | lgM1, | ||
const double | alpha | ||
) |
the mean number of satellite-satellite galaxy pairs
this function computes the mean number of satellite-satellite galaxy pairs, \(<N_{sat}(N_{sat}-1)>(M_h)\), as follows:
\[<N_{sat}(N_{sat}-1)>(M_h)=N_{sat}^2(M_h)\]
where the average number of satellite galaxies, \(N_{sat}\) are computed by cbl::modelling::twopt::Nsat
Mass | the mass of the hosting dark matter halo |
lgMmin | \(logM_{min}\): the logarithm of the mass scale at which 50% of haloes host a satellite galaxy |
sigmalgM | \(\sigma_{\log M_h}\): transition width reflecting the scatter in the luminosity-halo mass relation |
lgM0 | \(logM_0\): the logarithm of the cutoff mass |
lgM1 | \(logM_1\): the logarithm of the amplitude of the power law |
alpha | \(\alpha\): the slope of the power law |
Definition at line 1062 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.
double cbl::modelling::twopt::Pk_1halo | ( | const double | kk, |
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
model for the 1-halo term of the power spectrum
this function computes the 1-halo term of power spectrum as follows:
\[P_{1halo}(k, z) = P_{cs}(k, z)+P_{ss}(k, z)\]
where the central-satellite term, \(P_{cs}(k, z)\), and the satellite-satellite term, \(P_{ss}(k, z)\) are computed by cbl::modelling::twopt::Pk_cs and cbl::modelling::twopt::Pk_ss, respectively
kk | the wave vector module at which the model is computed |
inputs | pointer to the structure that contains the fixed input data used to construct the model |
parameter | vector containing the model parameters |
Definition at line 1125 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.
double cbl::modelling::twopt::Pk_2halo | ( | const double | kk, |
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
model for the 2-halo term of the power spectrum
this function computes the 2-halo term of the power spectrum as follows:
\[P_{2halo}(k, z) = P_{m, interp}(k, z) \left[\frac{1}{n_{gal}(z)} \int_{log(M_{min})}^{log(M_{max})} N_{gal}(M_h)\,n_{h, interp}(M_h, z) \,b_{h, interp}(M_h, z)\,\tilde{u}_h(k, M_h, z)\,M_hln(10){\rm d}log(M_h)\right]^2\]
where \(P_{m, interp}(k, z)\) is an interpolation of the matter power spectrum cbl::cosmology::Cosmology::Pk, the galaxy number density \(n_{gal}(z)\) is computed by cbl::modelling::twopt::ng, the average number of galaxies hosted in a dark matter halo of a given mass, \(N_{gal}(M_h)\), is computed by cbl::modelling::twopt::Navg, \(n_{h, interp}(M_h, z)\) is an interpolation of the halo mass function cosmology::Cosmology::mass_function, \(b_{h, interp}(M_h, z)\) is an interpolation of the halo bias cosmology::Cosmology::bias_halo, and the Fourier transform of the density profile, \(\tilde{u}_h(k, M_h, z)\), is computed by cbl::cosmology::Cosmology::density_profile_FourierSpace
The equation above was obtained from the original expression for \(P_{2halo}(k, z)\) using a change of variable from \(dM_h\) to \(dlogM_h\). The original expression for \(P_{2halo}(k, z)\) (e.g. Harikane et al. 2016) is the following:
\[P_{2halo}(k, z) = P_m(k, z) \left[\frac{1}{n_{gal}(z)} \int_{M_{min}}^{M_{max}} N_{gal}(M_h)\,n_h(M_h, z)\,b_h(M, z)\,\tilde{u}_h(k, M_h, z)\,{\rm d} M_h\right]^2\]
kk | the wave vector module at which the model is computed |
inputs | pointer to the structure that contains the fixed input data used to construct the model |
parameter | vector containing the model parameters |
Definition at line 1134 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.
double cbl::modelling::twopt::Pk_cs | ( | const double | kk, |
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
model for the central-satellite part of the 1-halo term of the power spectrum
this function computes the central-satellite part of the 1-halo term of power spectrum as follows:
\[P_{cs}(k, z) = \frac{2}{n_{gal}^2(z)} \int_{log(M_{min})}^{log(M_{max})} n_{h, interp}(M_h, z)\,<N_{cen}N_{sat}>(M_h)\, \tilde{u}_h(k, M_h, z)\,M_h\,ln(10)\,{\rm d}log(M_h)\]
where the galaxy number density \(n_{gal}(z)\) is computed by cbl::modelling::twopt::ng, \(n_{h, interp}(M_h, z)\) is an interpolation of the halo mass function cosmology::Cosmology::mass_function, \(<N_{cen}N_{sat}>(M_h)\) is computed by cbl::modelling::twopt::NcNs, and the Fourier transform of the halo density profile \(\tilde{u}_h(k, M_h, z)\) is computed by cbl::cosmology::Cosmology::density_profile_FourierSpace
The equation above was obtained from the original expression for \(P_{cs}(k, z)\) using a change of variable from \(dM_h\) to \(dlogM_h\). The original expression for \(P_{cs}(k, z)\) (e.g. Harikane et al. 2016) is the following:
\[P_{cs}(k, z) = \frac{2}{n_{gal}^2(z)} \int_{M_{min}}^{M_{max}} <N_{cen}N_{sat}>(M_h)\,n_h(M_h, z)\,\tilde{u}_h(k, M_h, z)\,{\rm d} M_h\]
kk | the wave vector module at which the model is computed |
inputs | pointer to the structure that contains the fixed input data used to construct the model |
parameter | vector containing the model parameters |
Definition at line 1071 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.
double cbl::modelling::twopt::Pk_HOD | ( | const double | kk, |
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
HOD model of the power spectrum.
this function computes the power spectrum as follows:
\[P(k, z) = P_{1halo}(k, z)+P_{2halo}(k, z)\]
where the 1-halo and 2-halo terms of the power spectrum, \(P_{1halo}(k, z)\) and \(P_{2halo}(k, z)\) are computed by cbl::modelling::twopt::Pk_1halo and cbl::modelling::twopt::Pk_2halo, respectively
kk | the wave vector module at which the model is computed |
inputs | pointer to the structure that contains the fixed input data used to construct the model |
parameter | vector containing the model parameters |
Definition at line 1160 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.
double cbl::modelling::twopt::Pk_l | ( | const double | kk, |
const int | l, | ||
const std::string | model, | ||
const std::vector< double > | parameter, | ||
const std::vector< std::shared_ptr< glob::FuncGrid >> | pk_interp, | ||
const double | prec = 1.e-5 , |
||
const double | alpha_perp = 1. , |
||
const double | alpha_par = 1. |
||
) |
the multipole of order l of the power spectrum
The function computes the legendre polynomial expansion of the \(P(k, \mu)\):
\[ P_l(k) = \frac{2l+1}{2} \int_{-1}^{1} \mathrm{d}\mu P(k, \mu) L_l(\mu) \]
where \(l\) is the order of the expansion and \(L_l(\mu)\) is the Legendere polynomial of order \(l\); \(P(k, \mu)\) is computed by cbl::modelling::twopt::Pkmu
kk | the wave vector module |
l | the order of the expansion |
model | the \(P(k,\mu)\) model |
parameter | vector containing parameter values |
pk_interp | vector containing power spectrum interpolating functions |
prec | the integral precision |
alpha_perp | the shift transverse to the l.o.s. |
alpha_par | the shift parallel to the l.o.s. |
Definition at line 403 of file ModelFunction_TwoPointCorrelation.cpp.
std::vector< double > cbl::modelling::twopt::Pk_l | ( | const std::vector< double > | kk, |
const int | l, | ||
const std::string | model, | ||
const std::vector< double > | parameter, | ||
const std::vector< std::shared_ptr< glob::FuncGrid >> | pk_interp, | ||
const double | prec = 1.e-5 , |
||
const double | alpha_perp = 1. , |
||
const double | alpha_par = 1. |
||
) |
the multipole of order l of the power spectrum
The function computes the legendre polynomial expansion of the \(P(k, \mu)\):
\[ P_l(k) = \frac{2l+1}{2} \int_{-1}^{1} \mathrm{d}\mu P(k, \mu) L_l(\mu) \]
where \(l\) is the order of the expansion and \(L_l(\mu)\) is the Legendere polynomial of order \(l\); \(P(k, \mu)\) is computed by cbl::modelling::twopt::Pkmu
kk | the wave vector module vector |
l | the order of the expansion |
model | the \(P(k,\mu)\) model |
parameter | vector containing parameter values |
pk_interp | vector containing power spectrum interpolating functions |
prec | the integral precision |
alpha_perp | the shift transverse to the l.o.s. |
alpha_par | the shift parallel to the l.o.s. |
Definition at line 416 of file ModelFunction_TwoPointCorrelation.cpp.
double cbl::modelling::twopt::Pk_ss | ( | const double | kk, |
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
model for the satellite-satellite part of the 1-halo term of the power spectrum
this function computes the satellite-satellite part of the 1-halo term of power spectrum as follows
\[P_{ss}(k, z) = \frac{1}{n_{gal}^2(z)} \int_{log(M_{min})}^{log(M_{max})} n_{h, interp}(M_h, z)\,<N_{sat}(N_{sat}-1)>(M_h) \,{\tilde{u}_h}^2(k, M_h, z)\,M_hln(10){\rm d}log(M_h)\]
where the galaxy number density \(n_{gal}(z)\) is computed by cbl::modelling::twopt::ng, \(n_{h, interp}(M_h, z)\) is an interpolation of the halo mass function cosmology::Cosmology::mass_function, \(<N_{sat}(N_{sat}-1)>(M_h)\) is computed by cbl::modelling::twopt::NsNs1, and the Fourier transform of the halo density profile \(\tilde{u}_h(k, M_h, z)\) is computed by cbl::cosmology::Cosmology::density_profile_FourierSpace
The equation above was obtained from the original expression for \(P_{ss}(k, z)\) using a change of variable from \(dM_h\) to \(dlogM_h\). The original expression for \(P_{ss}(k, z)\) (e.g. Harikane et al. 2016) is the following:
\[P_{ss}(k, z) = \frac{1}{n_{gal}^2(z)} \int_{M_{min}}^{M_{max}} <N_{sat}(N_{sat}-1)>(M_h)\,n_h(M_h, z)\,\tilde{u}_h^2(k, M_h, z)\,{\rm d} M_h\]
kk | the wave vector module at which the model is computed |
inputs | pointer to the structure that contains the fixed input data used to construct the model |
parameter | vector containing the model parameters |
Definition at line 1098 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.
double cbl::modelling::twopt::Pkmu | ( | const double | kk, |
const double | mu, | ||
const std::string | model, | ||
const std::vector< double > | parameter, | ||
const std::vector< std::shared_ptr< glob::FuncGrid >> | pk_interp, | ||
const double | alpha_perp = 1. , |
||
const double | alpha_par = 1. |
||
) |
the power spectrum as a function of k and \(\mu\)
this function computes the redshift-space power spectrum:
\[ \frac{P(k', \mu')}{\alpha_\perp^2\alpha_\parallel} \]
where
\[ k' = \frac{k}{\alpha_\perp} \sqrt{1+\mu^2 \left[ \left( \frac{\alpha_\parallel}{\alpha_\perp}\right)^{-2}-1 \right]} \, , \]
\[ \mu' = \mu\frac{\alpha_\perp}{\alpha_\parallel} \frac{1}{\sqrt{1+\mu^2\left[\left( \frac{\alpha_\parallel}{\alpha_\perp} \right)^{-2}-1\right]}} \, , \]
with one of the following models:
The Alcock-Paczynski term has been introduced following Ballinger et al. 1998, (https://arxiv.org/pdf/astro-ph/9605017.pdf), Beutler et al. 2016, sec 5.2 (https://arxiv.org/pdf/1607.03150.pdf)
The above models may differ for both the redshit-space distortions and the non-linear power spectrum implementation, and may have different numbers of free parameters.
kk | the true wave vector module, \(k'\) |
mu | the true line-of-sight cosine. \(\mu'\) |
model | the anisotropic power spectrum model; the possible options are: dispersion_Gauss, dispersion_Lorentz, dispersion_dewiggled, dispersion_modecoupling, Scoccimarro_Gauss, Scoccimarro_Lorentz Scoccimarro_Pezzotta_Gauss, Scoccimarro_Pezzotta_Lorentz, Scoccimarro_Bel_Gauss, Scoccimarro_Bel_Lorentz, TNS_Gauss, TNS_Lorentz, eTNS_Gauss, eTNS_Lorentz |
parameter | vector containing parameter values |
pk_interp | vector containing power spectrum interpolating functions |
alpha_perp | the shift transverse to the l.o.s. |
alpha_par | the shift parallel to the l.o.s. |
Definition at line 302 of file ModelFunction_TwoPointCorrelation.cpp.
double cbl::modelling::twopt::Pkmu_DeWiggled | ( | const double | kk, |
const double | mu, | ||
const double | sigmaNL_perp, | ||
const double | sigmaNL_par, | ||
const double | linear_growth_rate, | ||
const double | bias, | ||
const double | SigmaS, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_NW | ||
) |
the redshift-space galaxy power spectrum, as a function of \(k\) and \(\mu\), predicted by the de-wiggled model
this function computes the redshift-space BAO-damped power spectrum model \(P(k, \mu)\) (see e.g. Beutler et al. 2016 https://arxiv.org/pdf/1607.03149.pdf); Vargas-Magana et al. 2018 https://arxiv.org/pdf/1610.03506.pdf):
\[ P(k, \mu) = \left(1+\beta\mu^2 \right)^2 \left( \frac{1}{1+\left(kf\Sigma_S\mu\right)^2} \right)^2 P_{NL}(k) \]
where
\[ P_{NL}(k) = b^2 \left\{ \left[ P_{lin}(k) - P_{nw}(k) \right] e^{-k^2\Sigma_{NL}^2}+P_{nw}(k) \right\} , \]
\(\mu = k_{\parallel} / k\), \(P_{lin}\), \(P_{nw}\) are the linear and the de-wiggled power spectra, respectively (Eisenstein et al. 1998), and \(\beta = f/b\) with \(f\) the linear growth rate and \(b\) the bias, and \(\Sigma_S\) is the streaming scale that parameterises the Fingers of God effect at small scales. The BAO damping is parametrised via \(\Sigma^2_{NL} = 0.5 (1-\mu'^2)\Sigma^2_{\perp}+\mu'^2\Sigma^2_{\parallel} \), where \(\Sigma_{\perp}\) and \(\Sigma_{\parallel}\) are the damping term in the transverse and parallel directions to the line of sight, respectively.
kk | the wave vector module |
mu | the line of sight cosine |
sigmaNL_perp | the damping in the direction transverse to the l.o.s. |
sigmaNL_par | the damping in the direction parallel to the l.o.s. |
linear_growth_rate | the linear growth rate |
bias | the linear bias |
SigmaS | streaming scale |
Pk | linear power spectrum interpolator |
Pk_NW | de-wiggled power spectrum interpolator |
Definition at line 57 of file ModelFunction_TwoPointCorrelation.cpp.
double cbl::modelling::twopt::Pkmu_dispersion | ( | const double | kk, |
const double | mu, | ||
const std::string | DFoG, | ||
const double | linear_growth_rate, | ||
const double | bias, | ||
const double | sigmav, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pklin | ||
) |
the redshift-space galaxy power spectrum, as a function of \(k\) and \(\mu\), predicted by the dispersion model
this function computes the redshift-space power spectrum \(P(k, \mu)\) for the so-called dispersion model (see e.g. Pezzotta et al. 2017 https://arxiv.org/abs/1612.05645):
\[ P(k, \mu) = D_{FoG}(k, \mu, f, \sigma_v)\left(1+\frac{f}{b}\mu^2\right)^2b^2P^{lin}(k) \]
where \(f\) is the linear growth rate, \(b\) is the linear galaxy bias, \(\mu\) is the cosine of the angle between the line-of-sight and the comoving separation, \(P^{lin}(k')\) is the real-space matter power spectrum, which is computed by cbl::cosmology::Cosmology::Pk_matter, and \(D_{FoG}\) is a damping factor used to model the random peculiar motions at small scales, which can be either Gaussian:
\[ D_{FoG}(k, \mu, f, \sigma_v) = e^{-k^2\mu^2f^2\sigma_v^2} \]
or Lorentzian:
\[ D_{FoG}(k, \mu, f, \sigma_v) = \frac{1}{1+k^2\mu^2f^2\sigma_v^2} \]
kk | the wave vector module |
mu | the line of sight cosine |
DFoG | the damping factor (Gaussian or Lorentzian) |
linear_growth_rate | the linear growth rate |
bias | the linear bias |
sigmav | the streaming scale |
Pklin | linear power spectrum interpolator |
Definition at line 94 of file ModelFunction_TwoPointCorrelation.cpp.
double cbl::modelling::twopt::Pkmu_eTNS | ( | const double | kk, |
const double | mu, | ||
const std::string | DFoG, | ||
const double | linear_growth_rate, | ||
const double | bias, | ||
const double | bias2, | ||
const double | sigmav, | ||
const double | Ncorr, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_DeltaDelta, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_DeltaTheta, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_ThetaTheta, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_A11, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_A12, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_A22, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_A23, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_A33, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_B12, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_B13, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_B14, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_B22, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_B23, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_B24, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_B33, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_B34, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_B44, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_b2d, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_b2v, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_b22, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_bs2d, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_bs2v, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_b2s2, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_bs22, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | sigma32Pklin | ||
) |
the redshift-space galaxy power spectrum, as a function of \(k\) and \(\mu\), predicted by the extended TNS (Taruya, Nishimichi and Saito) model
this function computes the so-called extended TNS redshift-space power spectrum \(P(k, \mu)\) (see e.g. Beutler et al. 2014 https://arxiv.org/abs/1312.4611; Gil-Marìn et al. 2014 https://arxiv.org/abs/1407.1836; de la Torre et al. https://arxiv.org/abs/1612.05647) which is computed in 1-loop aproximation using (standard) Perturbation Theory (Taruya et al. 2010 https://arxiv.org/abs/1006.0699; Taruya et al. 2013 https://arxiv.org/abs/1301.3624; McDonald and Roy 2019 https://arxiv.org/abs/0902.0991):
\[ P(k, \mu) = D_{FoG}(k, \mu, f, \sigma_v)\left[P_{\mathrm{g}, \delta \delta}(k) +2 f \mu^{2} P_{\mathrm{g}, \delta \theta}(k)+f^{2} \mu^{4} P_{\theta \theta}(k) + b_{1}^{3} A(k, \mu, f/b_{1})+b_{1}^{4} B(k, \mu, f/b_{1})\right] \]
where
\[ P_{\mathrm{g}, \delta \delta}(k) = b_{1}^{2} P_{\delta \delta}(k)+2 b_{2} b_{1} P_{b 2, \delta}(k)+2 b_{s^2} b_{1} P_{b s 2, \delta}(k) \\ +2 b_{3 \mathrm{nl}} b_{1} \sigma_{3}^{2}(k) P_{\mathrm{m}}^{\mathrm{lin}}(k)+b_{2}^{2} P_{b 22}(k) \\ +2 b_{2} b_{s^2} P_{b 2 s 2}(k)+b_{s^2}^{2} P_{b s 22}(k)+N \]
\[ P_{\mathrm{g}, \delta \theta}(k) = b_{1} P_{\delta \theta}(k)+b_{2} P_{b 2, \theta}(k)+b_{s^2} P_{b s 2, \theta}(k) \\ +b_{3 \mathrm{nl}} \sigma_{3}^{2}(k) P_{\mathrm{m}}^{\mathrm{lin}}(k) \]
and
\[ A(k, \mu ; f) = j_{1} \int d^{3} r\, e^{i \boldsymbol{k} \cdot \boldsymbol{r}}\left\langle A_{1} A_{2} A_{3}\right\rangle_{c} = k \mu f \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{p_{z}}{p^{2}}\left\{B_{\sigma}(\boldsymbol{p}, \boldsymbol{k}-\boldsymbol{p},-\boldsymbol{k}) - B_{\sigma}(\boldsymbol{p}, \boldsymbol{k},-\boldsymbol{k}-\boldsymbol{p})\right\} \, , \]
\[ B(k, \mu ; f) = j_{1}^{2} \int d^{3} r\, e^{i \boldsymbol{k} \cdot \boldsymbol{r}}\left\langle A_{1} A_{2}\right\rangle_{c}\left\langle A_{1} A_{3}\right\rangle_{c} = (k \mu f)^{2} \int \frac{d^{3} p}{(2 \pi)^{3}} F_{\sigma}(\boldsymbol{p}) F_{\sigma}(\boldsymbol{k}-\boldsymbol{p}) \, , \]
\[ b_{s^2} = -\frac{4}{7}(b_1-1)\, , \]
\[ b_{3 \mathrm{nl}} = \frac{32}{315}(b_1-1) \]
where \(f\) is the linear growth rate, \(b\) is the linear galaxy bias, \(\mu\) is the cosine of the angle between the line-of-sight and the comoving separation, \(P_{\delta\delta}(k)\), \(P_{\delta\theta}(k)\) and \(P_{\theta\theta}(k)\) are the real-space matter power spectrum and the real-space density-velocity divergence cross-spectrum and the real-space velocity divergence auto-spectrum, computed at 1-loop using (Standard) Perturbation Theory as implemented in the CPT Library [http://www2.yukawa.kyoto-u.ac.jp/~atsushi.taruya/cpt_pack.html] by cbl::cosmology::Cosmology::Pk_TNS_dd_dt_tt, all the terms in the power spectrum correction correction terms are computed by cbl::cosmology::Cosmology::Pk_TNS_AB_terms_1loop and cbl::cosmology::Cosmology::Pk_eTNS_terms_1loop, \(D_{FoG}\) is a damping factor used to model the random peculiar motions at small scales, which can be either Gaussian:
\[ D_{FoG}(k, \mu, f, \sigma_v) = e^{-k^2\mu^2f^2\sigma_v^2} \]
or Lorentzian:
\[ D_{FoG}(k, \mu, f, \sigma_v) = \frac{1}{1+k^2\mu^2f^2\sigma_v^2} \]
kk | the wave vector module |
mu | the line of sight cosine |
DFoG | the damping factor (Gaussian or Lorentzian) |
linear_growth_rate | the linear growth rate |
bias | the linear bias |
bias2 | the second order local bias |
sigmav | the streaming scale |
Ncorr | constant stochasticity term |
Pk_DeltaDelta | power spectrum interpolator |
Pk_DeltaTheta | power spectrum interpolator |
Pk_ThetaTheta | power spectrum interpolator |
Pk_A11 | power spectrum interpolator |
Pk_A12 | power spectrum interpolator |
Pk_A22 | power spectrum interpolator |
Pk_A23 | power spectrum interpolator |
Pk_A33 | power spectrum interpolator |
Pk_B12 | power spectrum interpolator |
Pk_B13 | power spectrum interpolator |
Pk_B14 | power spectrum interpolator |
Pk_B22 | power spectrum interpolator |
Pk_B23 | power spectrum interpolator |
Pk_B24 | power spectrum interpolator |
Pk_B33 | power spectrum interpolator |
Pk_B34 | power spectrum interpolator |
Pk_B44 | power spectrum interpolator |
Pk_b2d | power spectrum interpolator |
Pk_b2v | power spectrum interpolator |
Pk_b22 | power spectrum interpolator |
Pk_bs2d | power spectrum interpolator |
Pk_bs2v | power spectrum interpolator |
Pk_b2s2 | power spectrum interpolator |
Pk_bs22 | power spectrum interpolator |
sigma32Pklin | power spectrum interpolator |
Definition at line 236 of file ModelFunction_TwoPointCorrelation.cpp.
double cbl::modelling::twopt::Pkmu_ModeCoupling | ( | const double | kk, |
const double | mu, | ||
const double | linear_growth_rate, | ||
const double | bias, | ||
const double | sigmav, | ||
const double | AMC, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | PkLin, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | PkMC | ||
) |
the redshift-space galaxy power spectrum, as a function of \(k\) and \(\mu\), predicted by the mode-coupling model
this function computes the redshift-space mode-coupling power spectrum model \(P(k, \mu)\) (see e.g. Sanchez et al. 2013 https://arxiv.org/pdf/1312.4854.pdf; Beutler et al. 2016 https://arxiv.org/pdf/1607.03149.pdf):
\[ P(k, \mu) = \left(1+\beta\mu^2 \right)^2 \left( \frac{1}{1+\left(kf\sigma_v\mu\right)^2} \right)^2 P_{NL}(k) \]
where
\[ P_{NL}(k) = b^2 \left\{ P_{L}(k)e^{-(k\mu\sigma_v)^2} +A_{MC}P_{MC}(k) \right\} , \]
\(\mu = k_{\parallel} / k\), \(P_{lin}\), \(P_{MC}\) are the linear and the linear and 1loop correction power spectra, and \(\beta = f/b\) with \(f\) the linear growth rate and \(b\) the bias, \(\sigma_v\) is the streaming scale that parameterises the Fingers of God effect at small scales and A_{MC} is the mode coupling bias.
kk | the wave vector module |
mu | the line of sight cosine |
linear_growth_rate | the linear growth rate |
bias | the linear bias |
sigmav | the streaming scale |
AMC | the mode coupling bias |
PkLin | linear power spectrum interpolator |
PkMC | the 1loop power spectrum correction |
Definition at line 76 of file ModelFunction_TwoPointCorrelation.cpp.
double cbl::modelling::twopt::Pkmu_Scoccimarro | ( | const double | kk, |
const double | mu, | ||
const std::string | DFoG, | ||
const double | linear_growth_rate, | ||
const double | bias, | ||
const double | sigmav, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_DeltaDelta, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_DeltaTheta, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_ThetaTheta | ||
) |
the redshift-space galaxy power spectrum, as a function of \(k\) and \(\mu\), predicted by the Scoccimarro model
this function computes the redshift-space power spectrum \(P(k, \mu)\) for the Scoccimarro model, in 1-loop approximation using (standard) Perturbation Theory (see e.g. Scoccimarro 2004 https://arxiv.org/abs/astro-ph/0407214):
\[ P(k, \mu) = D_{FoG}(k, \mu, f \sigma_v) \left(b^2P_{\delta\delta}(k) + 2fb\mu^2P_{\delta\theta}(k) + f^2\mu^4P_{\theta\theta}(k)\right) \]
where \(f\) is the linear growth rate, \(b\) is the linear galaxy bias, \(\mu\) is the cosine of the angle between the line-of-sight and the comoving separation, \(P_{\delta\delta}(k)\), \(P_{\delta\theta}(k)\) and \(P_{\theta\theta}(k)\) are the real-space matter power spectrum and the real-space density-velocity divergence cross-spectrum and the real-space velocity divergence auto-spectrum, computed at 1-loop using (Standard) Perturbation Theory as implemented in the CPT Library [http://www2.yukawa.kyoto-u.ac.jp/~atsushi.taruya/cpt_pack.html] by cbl::cosmology::Cosmology::Pk_TNS_dd_dt_tt, \(D_{FoG}\) is a damping factor used to model the random peculiar motions at small scales, which can be either Gaussian:
\[ D_{FoG}(k, \mu, f, \sigma_v) = e^{-k^2\mu^2f^2\sigma_v^2} \]
or Lorentzian:
\[ D_{FoG}(k, \mu, f, \sigma_v) = \frac{1}{1+k^2\mu^2f^2\sigma_v^2} \]
kk | the wave vector module |
mu | the line of sight cosine |
DFoG | the damping factor (Gaussian or Lorentzian) |
linear_growth_rate | the linear growth rate |
bias | the linear bias |
sigmav | the streaming scale |
Pk_DeltaDelta | power spectrum interpolator |
Pk_DeltaTheta | power spectrum interpolator |
Pk_ThetaTheta | power spectrum interpolator |
Definition at line 113 of file ModelFunction_TwoPointCorrelation.cpp.
double cbl::modelling::twopt::Pkmu_Scoccimarro_fitBel | ( | const double | kk, |
const double | mu, | ||
const std::string | DFoG, | ||
const double | linear_growth_rate, | ||
const double | bias, | ||
const double | sigmav, | ||
const double | kd, | ||
const double | bb, | ||
const double | a1, | ||
const double | a2, | ||
const double | a3, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pklin, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pknonlin | ||
) |
the redshift-space galaxy power spectrum, as a function of \(k\) and \(\mu\), predicted by the Scoccimarro model
this function computes the redshift-space power spectrum \(P(k, \mu)\) for the Scoccimarro model, using fitting functions for \(P_{\delta\theta}(k)\) and \(P_{\theta\theta}(k)\) folowing Bel et al. 2019 https://arxiv.org/abs/1809.09338 :
\[ P(k, \mu) = D_{FoG}(k, \mu, f \sigma_v) \left(b^2P_{\delta\delta}(k) + 2fb\mu^2P_{\delta\theta}(k) + f^2\mu^4P_{\theta\theta}(k)\right) \]
where \(f\) is the linear growth rate, \(b\) is the linear galaxy bias, \(\mu\) is the cosine of the angle between the line-of-sight and the comoving separation, \(D_{FoG}\) is a damping factor used to model the random peculiar motions at small scales, which can be either Gaussian:
\[ D_{FoG}(k, \mu, f, \sigma_v) = e^{-k^2\mu^2f^2\sigma_v^2} \]
or Lorentzian:
\[ D_{FoG}(k, \mu, f, \sigma_v) = \frac{1}{1+k^2\mu^2f^2\sigma_v^2} \]
and \(P_{\delta\delta}(k)\), \(P_{\delta\theta}(k)\) and \(P_{\theta\theta}(k)\) are the real-space matter power spectrum, the real-space density-velocity divergence cross-spectrum and the real-space velocity divergence auto-spectrum. \(P_{\delta\theta}(k)\) and \(P_{\theta\theta}(k)\) are approximated as follows:
\[ P_{\delta\theta}(k) = \left(P_{\delta\delta}(k)P^{lin}(k)\right)^{1/2}e^{-k/k_\delta-a_0k^6} \, , \]
\[ P_{\theta\theta}(k) = P^{lin}(k)e^{-k(a_1+a_2k+a_3k^2)} \]
where both the linear power spectrum \(P^{lin}(k)\), and the non-linear power spectrum \(P_{\delta\delta}(k)\) are computed by cbl::cosmology::Cosmology::Pk_matter, and \(k_\delta\), \(a_0\), \(a_1\), \(a_2\), \(a_3\) are free parameters.
kk | the wave vector module |
mu | the line of sight cosine |
DFoG | the damping factor (Gaussian or Lorentzian) |
linear_growth_rate | the linear growth rate |
bias | the linear bias |
sigmav | the streaming scale |
kd | fitting parameter |
bb | fitting parameter |
a1 | fitting parameter |
a2 | fitting parameter |
a3 | fitting parameter |
Pklin | linear power spectrum interpolator |
Pknonlin | nolinear power spectrum interpolator |
Definition at line 163 of file ModelFunction_TwoPointCorrelation.cpp.
double cbl::modelling::twopt::Pkmu_Scoccimarro_fitPezzotta | ( | const double | kk, |
const double | mu, | ||
const std::string | DFoG, | ||
const double | linear_growth_rate, | ||
const double | bias, | ||
const double | sigmav, | ||
const double | kd, | ||
const double | kt, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pklin, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pknonlin | ||
) |
the redshift-space galaxy power spectrum, as a function of \(k\) and \(\mu\), predicted by the Scoccimarro model
this function computes the redshift-space power spectrum \(P(k, \mu)\) for the Scoccimarro model, using fitting functions for \(P_{\delta\theta}(k)\) and \(P_{\theta\theta}(k)\) following Pezzotta et al. 2017 https://arxiv.org/abs/1612.05645, Mohammad et al. 2018 https://arxiv.org/abs/1807.05999, Bel et al. 2019 https://arxiv.org/abs/1809.09338 :
\[ P(k, \mu) = D_{FoG}(k, \mu, f \sigma_v) \left(b^2P_{\delta\delta}(k) + 2fb\mu^2P_{\delta\theta}(k) + f^2\mu^4P_{\theta\theta}(k)\right) \]
where \(f\) is the linear growth rate, \(b\) is the linear galaxy bias, \(\mu\) is the cosine of the angle between the line-of-sight and the comoving separation, \(D_{FoG}\) is a damping factor used to model the random peculiar motions at small scales, which can be either Gaussian:
\[ D_{FoG}(k, \mu, f, \sigma_v) = e^{-k^2\mu^2f^2\sigma_v^2} \]
or Lorentzian:
\[ D_{FoG}(k, \mu, f, \sigma_v) = \frac{1}{1+k^2\mu^2f^2\sigma_v^2} \]
and \(P_{\delta\delta}(k)\), \(P_{\delta\theta}(k)\) and \(P_{\theta\theta}(k)\) are the real-space matter power spectrum, the real-space density-velocity divergence cross-spectrum and the real-space velocity divergence auto-spectrum. \(P_{\delta\theta}(k)\) and \(P_{\theta\theta}(k)\) are approximated as follows:
\[ P_{\delta\theta}(k) = \left(P_{\delta\delta}(k)P^{lin}(k)e^{-k/k_\delta} \right)^{1/2} \,, \]
\[ P_{\theta\theta}(k) = P^{lin}(k)e^{-k/k_\theta} \]
where both the linear power spectrum \(P^{lin}(k)\), and the non-linear power spectrum \(P_{\delta\delta}(k)\) are computed by cbl::cosmology::Cosmology::Pk_matter, and \(k_\delta\), \(k_\theta\) are free parameters.
kk | the wave vector module |
mu | the line of sight cosine |
DFoG | the damping factor (Gaussian or Lorentzian) |
linear_growth_rate | the linear growth rate |
bias | the linear bias |
sigmav | the streaming scale |
kd | fitting parameter |
kt | fitting parameter |
Pklin | linear power spectrum interpolator |
Pknonlin | nolinear power spectrum interpolator |
Definition at line 139 of file ModelFunction_TwoPointCorrelation.cpp.
double cbl::modelling::twopt::Pkmu_TNS | ( | const double | kk, |
const double | mu, | ||
const std::string | DFoG, | ||
const double | linear_growth_rate, | ||
const double | bias, | ||
const double | sigmav, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_DeltaDelta, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_DeltaTheta, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_ThetaTheta, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_A11, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_A12, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_A22, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_A23, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_A33, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_B12, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_B13, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_B14, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_B22, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_B23, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_B24, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_B33, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_B34, | ||
const std::shared_ptr< cbl::glob::FuncGrid > | Pk_B44 | ||
) |
the redshift-space galaxy power spectrum, as a function of \(k\) and \(\mu\), predicted by the TNS (Taruya, Nishimichi and Saito) model
this function computes the redshift-space power spectrum \(P(k, \mu)\) for the (Taruya, Nishimichi and Saito) TNS model, in 1-loop approximation using (standard) Perturbation Theory (see e.g. Taruya et. al, 2010 https://arxiv.org/abs/1006.0699 and Taruya et al., 2013 https://arxiv.org/abs/1301.3624):
\[ P(k, \mu) = D_{FoG}(k, \mu, f, \sigma_v)\left(b^2P_{\delta\delta}(k) + 2fb\mu^2P_{\delta\theta}(k) + f^2\mu^4P_{\theta\theta}(k) + b^3A(k, \mu, f) + b^4B(k, \mu, f)\right) \]
\[ A(k, \mu ; f) = j_{1} \int d^{3} r e^{i \boldsymbol{k} \cdot \boldsymbol{r}}\left\langle A_{1} A_{2} A_{3}\right\rangle_{c}=k \mu f \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{p_{z}}{p^{2}}\left\{B_{\sigma}(\boldsymbol{p}, \boldsymbol{k}-\boldsymbol{p},-\boldsymbol{k})-B_{\sigma}(\boldsymbol{p}, \boldsymbol{k},-\boldsymbol{k}-\boldsymbol{p})\right\}\, , \]
\[ B(k, \mu ; f)=j_{1}^{2} \int d^{3} r e^{i \boldsymbol{k} \cdot \boldsymbol{r}}\left\langle A_{1} A_{2}\right\rangle_{c}\left\langle A_{1} A_{3}\right\rangle_{c}=(k \mu f)^{2} \int \frac{d^{3} p}{(2 \pi)^{3}} F_{\sigma}(\boldsymbol{p}) F_{\sigma}(\boldsymbol{k}-\boldsymbol{p}) \]
where \(f\) is the linear growth rate, \(b\) is the linear galaxy bias, \(\mu\) is the cosine of the angle between the line-of-sight and the comoving separation, \(P_{\delta\delta}(k)\), \(P_{\delta\theta}(k)\) and \(P_{\theta\theta}(k)\) are the real-space matter power spectrum and the real-space density-velocity divergence cross-spectrum and the real-space velocity divergence auto-spectrum, computed at 1-loop using (Standard) Perturbation Theory as implemented in the CPT Library [http://www2.yukawa.kyoto-u.ac.jp/~atsushi.taruya/cpt_pack.html] by cbl::cosmology::Cosmology::Pk_TNS_dd_dt_tt, all the terms in the power spectrum correction correction terms are computed by cbl::cosmology::Cosmology::Pk_TNS_AB_terms_1loop, \(D_{FoG}\) is a damping factor used to model the random peculiar motions at small scales, which can be either Gaussian:
\[ D_{FoG}(k, \mu, f, \sigma_v) = e^{-k^2\mu^2f^2\sigma_v^2} \]
or Lorentzian:
\[ D_{FoG}(k, \mu, f, \sigma_v) = \frac{1}{1+k^2\mu^2f^2\sigma_v^2} \]
kk | the wave vector module |
mu | the line of sight cosine |
DFoG | the damping factor (Gaussian or Lorentzian) |
linear_growth_rate | the linear growth rate |
bias | the linear bias |
sigmav | the streaming scale |
Pk_DeltaDelta | power spectrum interpolator |
Pk_DeltaTheta | power spectrum interpolator |
Pk_ThetaTheta | power spectrum interpolator |
Pk_A11 | power spectrum interpolator |
Pk_A12 | power spectrum interpolator |
Pk_A22 | power spectrum interpolator |
Pk_A23 | power spectrum interpolator |
Pk_A33 | power spectrum interpolator |
Pk_B12 | power spectrum interpolator |
Pk_B13 | power spectrum interpolator |
Pk_B14 | power spectrum interpolator |
Pk_B22 | power spectrum interpolator |
Pk_B23 | power spectrum interpolator |
Pk_B24 | power spectrum interpolator |
Pk_B33 | power spectrum interpolator |
Pk_B34 | power spectrum interpolator |
Pk_B44 | power spectrum interpolator |
Definition at line 185 of file ModelFunction_TwoPointCorrelation.cpp.
std::vector< double > cbl::modelling::twopt::true_k_mu_AP | ( | const double | kk, |
const double | mu, | ||
const double | alpha_perp, | ||
const double | alpha_par | ||
) |
true k and \(\mu\) power spectrum coordinates as a function of observed ones
this function computes k' and \(\mu'\) power spectrum coordinates in the true cosmology from k and \(\mu\) coordinates estimated in a fiducial cosmology, using the Alcock-Paczynski parameters (see e.g. Beutler et al. 2016, sec 5.2 ( https://arxiv.org/pdf/1607.03150.pdf):
\[ k' = \frac{k}{\alpha_\perp} \sqrt{1+\mu^2 \left[ \left( \frac{\alpha_\parallel}{\alpha_\perp}\right)^{-2}-1 \right]} \, , \]
\[ \mu' = \mu\frac{\alpha_\perp}{\alpha_\parallel} \frac{1}{\sqrt{1+\mu^2\left[\left( \frac{\alpha_\parallel}{\alpha_\perp} \right)^{-2}-1\right]}} \, , \]
kk | the wave vector module |
mu | the line of sight cosine |
alpha_perp | the shift transverse to the l.o.s. |
alpha_par | the shift parallel to the l.o.s. |
Definition at line 46 of file ModelFunction_TwoPointCorrelation.cpp.
std::vector< double > cbl::modelling::twopt::wp_1halo | ( | const std::vector< double > | rp, |
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
model for the 1-halo term of the projected two-point correlation function
this function computes the 1-halo term of the projected correlation function by integrating the redshift-space 2D correlation function (e.g. van den Bosch et al. 2012):
\[w_{p, 1halo}(r_p, z) = 2\int_{0}^{\pi_{max}}\xi_{1halo}(r_p, \pi, z)\,{\rm d}\pi\]
where the 1-halo term of the redshift-space galaxy correlation function, \(\xi_{1halo}(r_p, \pi, z)\), is computed by cbl::modelling::twopt::xi_1halo_zspace
rp | \(r_p\): the scale perpendicular to the line of sight at which the model is computed |
inputs | pointer to the structure that contains the fixed input data used to construct the model |
parameter | vector containing the model parameters |
Definition at line 131 of file ModelFunction_TwoPointCorrelation_projected.cpp.
std::vector< double > cbl::modelling::twopt::wp_1halo_approx | ( | const std::vector< double > | rp, |
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
model for the 1-halo term of the projected two-point correlation function
this function estimates the 1-halo term of the projected correlation function by integrating the 1-halo term of the real-space spherically averaged two-point correlation function, as follows:
\[w_{p, 1halo}(r_p, z) = 2\int_{r_p}^{r_{out}}\xi_{1halo}(r, z)\frac{r\,{\rm d}r} {\sqrt{r^2-r_p^2}} \]
where \(r_{out}=\sqrt{r_p^2+r_{max}^2}\) and \(\xi_{1halo}(r, z)\) is computed by cbl::modelling::twopt::xi_1halo
in the limit \(r_{max}\rightarrow\infty\), this function is completely independent of peculiar velocities
rp | \(r_p\): the scale perpendicular to the line of sight at which the model is computed |
inputs | pointer to the structure that contains the fixed input data used to construct the model |
parameter | vector containing the model parameters |
Definition at line 76 of file ModelFunction_TwoPointCorrelation_projected.cpp.
std::vector< double > cbl::modelling::twopt::wp_2halo | ( | const std::vector< double > | rp, |
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
model for the 2-halo term of the projected two-point correlation function
this function computes the 2-halo term of the projected correlation function by integrating the redshift-space 2D correlation function (e.g. van den Bosch et al. 2012):
\[w_{p, 2halo}(r_p, z) = 2\int_{0}^{\pi_{max}}\xi_{2halo}(r_p, \pi, z)\,{\rm d}\pi\]
where the 2-halo term of the redshift-space galaxy correlation function, \(\xi_{2halo}(r_p, \pi, z)\), is computed by cbl::modelling::twopt::xi_2halo_zspace
rp | \(r_p\): the scale perpendicular to the line of sight at which the model is computed |
inputs | pointer to the structure that contains the fixed input data used to construct the model |
parameter | vector containing the model parameters |
Definition at line 140 of file ModelFunction_TwoPointCorrelation_projected.cpp.
std::vector< double > cbl::modelling::twopt::wp_2halo_approx | ( | const std::vector< double > | rp, |
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
model for the 2-halo term of the projected two-point correlation function
this function estimates the 2-halo term of the projected correlation function by integrating the 2-halo term of the real-space spherically averaged two-point correlation function, as follows:
\[w_{p, 2halo}(r_p, z) = 2\int_{r_p}^{r_{out}}\xi_{2halo}(r, z)\frac{r\,{\rm d}r} {\sqrt{r^2-r_p^2}} \]
where \(r_{out}=\sqrt{r_p^2+r_{max}^2}\) and \(\xi_{2halo}(r, z)\) is computed by cbl::modelling::twopt::xi_2halo
in the limit \(r_{max}\rightarrow\infty\), this function is completely independent of peculiar velocities
rp | \(r_p\): the scale perpendicular to the line of sight at which the model is computed |
inputs | pointer to the structure that contains the fixed input data used to construct the model |
parameter | vector containing the model parameters |
Definition at line 85 of file ModelFunction_TwoPointCorrelation_projected.cpp.
std::vector< double > cbl::modelling::twopt::wp_from_xi | ( | FunctionDoubleDoubleDoublePtrVectorRef | func, |
const std::vector< double > | rp, | ||
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
function used to compute the projected two-point correlation function
this function is used to compute the projected correlation function by integrating the redshift-space 2D correlation function (e.g. van den Bosch et al. 2012):
\[w_{p}(r_p, z) = 2\int_{0}^{\pi_{max}}\xi(r_p, \pi, z)\,{\rm d}\pi\]
where the redshift-space galaxy correlation function, \(\xi(r_p, \pi, z)\), is either the 1-halo, the 2-halo, or the full-shape redshift-space correlation function, computed by either cbl::modelling::twopt::xi_1halo_zspace, cbl::modelling::twopt::xi_2halo_zspace, or cbl::modelling::twopt::xi_HOD_space, respectively
func | the redshift-space two-point correlation function that will be integrated (it can be either the 1-halo, the 2-halo, or the full-shape correlation function) |
rp | \(r_p\): the scale perpendicular to the line of sight at which the model is computed |
inputs | pointer to the structure that contains the fixed input data used to construct the model |
parameter | vector containing the model parameters |
Definition at line 103 of file ModelFunction_TwoPointCorrelation_projected.cpp.
std::vector< double > cbl::modelling::twopt::wp_from_xi_approx | ( | FunctionVectorVectorPtrVectorRef | func, |
const std::vector< double > | rp, | ||
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
function used to compute the projected two-point correlation function
this function is used to compute the projected correlation function by integrating the real-space spherically averaged two-point correlation function, as follows:
\[w_{p}(r_p, z) = 2\int_{r_p}^{r_{out}}\xi(r, z)\frac{r\,{\rm d}r} {\sqrt{r^2-r_p^2}} \]
where \(r_{out}=\sqrt{r_p^2+r_{max}^2}\) and \(\xi(r, z)\) is either the 1-halo, the 2-halo, or the full-shape real-space correlation function, computed by either cbl::modelling::twopt::xi_1halo, cbl::modelling::twopt::xi_2halo, or cbl::modelling::twopt::xi_HOD, respectively
in the limit \(r_{max}\rightarrow\infty\), this function is completely independent of peculiar velocities
func | the two-point real-space correlation function that will be integrated (it can be either the 1-halo, the 2-halo, or the full-shape correlation function) |
rp | \(r_p\): the scale perpendicular to the line of sight at which the model is computed |
inputs | pointer to the structure that contains the fixed input data used to construct the model |
parameter | vector containing the model parameters |
Definition at line 47 of file ModelFunction_TwoPointCorrelation_projected.cpp.
std::vector< double > cbl::modelling::twopt::wp_from_Xi_rppi | ( | const std::vector< double > | rp, |
const double | pimax, | ||
const std::string | model, | ||
const std::vector< double > | parameter, | ||
const std::vector< std::shared_ptr< glob::FuncGrid >> | pk_interp, | ||
const double | prec = 1.e-5 , |
||
const double | alpha_perp = 1. , |
||
const double | alpha_par = 1. |
||
) |
the projected two-point correlation function
The function computes the projected two-point correlation function from the 2D two-point correlation function in Cartesian coordinates:
\[ w_p(r_p) = \int_0^{\pi_{max}} \mathrm{d}\pi \xi(r_p, \pi) \]
where \(xi(r_p, \pi)\) is the Cartesian two-point correlation function
rp | vector of scales transverse to the line of sight |
pimax | the maximum scale of integration |
model | the \(P(k,\mu)\) model |
parameter | vector containing parameter values |
pk_interp | vector containing power spectrum interpolating functions |
prec | the integral precision |
alpha_perp | the shift transverse to the l.o.s. |
alpha_par | the shift parallel to the l.o.s. |
Definition at line 541 of file ModelFunction_TwoPointCorrelation.cpp.
std::vector< double > cbl::modelling::twopt::wp_HOD | ( | const std::vector< double > | rp, |
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
HOD model of the projected two-point correlation function.
this function computes:
\[w_p(r_p, z) = w_{p,1halo}(r_p, z)+w_{p,2halo}(r_p, z)\]
where \(w_{p,1halo}(r_p)\) and \(w_{p,2halo}(r_p)\) are computed by cbl::modelling::twopt::wp_1halo and cbl::modelling::twopt::wp_2halo, respectively
rp | \(r_p\): the scale perpendicular to the line of sight at which the model is computed |
inputs | pointer to the structure that contains the fixed input data used to construct the model |
parameter | vector containing the model parameters |
Definition at line 149 of file ModelFunction_TwoPointCorrelation_projected.cpp.
std::vector< double > cbl::modelling::twopt::wp_HOD_approx | ( | const std::vector< double > | rp, |
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
HOD model of the projected two-point correlation function.
the function computes:
\[w_p(r_p, z) = w_{p,1halo}(r_p, z)+w_{p,2halo}(r_p, z)\]
where \(w_{p,1halo}(r_p)\) and \(w_{p,2halo}(r_p)\) are computed by cbl::modelling::twopt::wp_1halo_approx and cbl::modelling::twopt::wp_2halo_approx, respectively
in the limit \(r_{max}\rightarrow\infty\), this function is completely independent of peculiar velocities
rp | \(r_p\): the scale perpendicular to the line of sight at which the model is computed |
inputs | pointer to the structure that contains the fixed input data used to construct the model |
parameter | vector containing the model parameters |
Definition at line 94 of file ModelFunction_TwoPointCorrelation_projected.cpp.
std::vector< double > cbl::modelling::twopt::xi0_BAO_sigmaNL | ( | const std::vector< double > | rad, |
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
model for the BAO signal in the monopole of the two-point correlation function
the function computes:
\[\xi_0(s) = B^2 \cdot \xi_{\rm DM}(\alpha\cdot s, \Sigma_{NL}) + A_0 + A_1/s + A_2/s^2\]
the model has 6 parameters:
the dark matter two-point correlation function is fixed and provided in input
rad | the scale at which the model is computed |
inputs | pointer to the structure that contains the dark matter power spectrum |
parameter | 6D vector containing the input parameters |
Definition at line 48 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.
std::vector< double > cbl::modelling::twopt::xi0_damped_bias_sigmaz | ( | const std::vector< double > | rad, |
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
the damped two-point correlation monopole; from Sereno et al. 2015
The function computes the damped two-point correlation monopole:
\(\xi(s) = b^2 \xi'(s) + b \xi''(s) + \xi'''(s) \, ;\)
where b is the linear bias and the terms \(\xi'(s)\), \(\xi''(s)\), \(\xi'''(s)\) are the Fourier anti-transform of the power spectrum terms obtained integrating the redshift space 2D power spectrum along \(\mu\) (see cbl::modelling::twopt.:damped_Pk_terms, see cbl::modelling::twopt.:damped_Xi).
the model has 2 parameters:
rad | the scale at which the model is computed |
inputs | pointer to the structure that contains the cosmological paramters used to compute the dark matter two-point correlation function |
parameter | 1D vector containing the linear bias |
Definition at line 685 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.
std::vector< double > cbl::modelling::twopt::xi0_damped_scaling_relation_sigmaz | ( | const std::vector< double > | rad, |
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
the damped two-point correlation monopole; from Sereno et al. 2015
The function computes the damped two-point correlation monopole:
\(\xi(s) = b^2 \xi'(s) + b \xi''(s) + \xi'''(s) \, ;\)
where b is the linear bias and the terms \(\xi'(s)\), \(\xi''(s)\), \(\xi'''(s)\) are the Fourier anti-transform of the power spectrum terms obtained integrating the redshift space 2D power spectrum along \(\mu\) (see cbl::modelling::twopt.:damped_Pk_terms, see cbl::modelling::twopt.:damped_Xi).
the model has 4 parameters:
the linear bias is computed and used in the modelling. It is provided as an output parameter
rad | the scale at which the model is computed |
inputs | pointer to the structure that contains the cosmological paramters used to compute the dark matter two-point correlation function |
parameter | 1D vector containing the linear bias |
Definition at line 413 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.
std::vector< double > cbl::modelling::twopt::xi0_damped_scaling_relation_sigmaz_cosmology | ( | const std::vector< double > | rad, |
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
the damped two-point correlation monopole; from Sereno et al. 2015
The function computes the damped two-point correlation monopole:
\(\xi(s) = b^2 \xi'(s) + b \xi''(s) + \xi'''(s) \, ;\)
where b is the linear bias and the terms \(\xi'(s)\), \(\xi''(s)\), \(\xi'''(s)\) are the Fourier anti-transform of the power spectrum terms obtained integrating the redshift space 2D power spectrum along \(\mu\) (see cbl::modelling::twopt.:damped_Pk_terms, see cbl::modelling::twopt.:damped_Xi).
rad | the scale at which the model is computed |
inputs | pointer to the structure that contains the cosmological paramters used to compute the dark matter two-point correlation function |
parameter | 1D vector containing the linear bias |
Definition at line 461 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.
std::vector< double > cbl::modelling::twopt::xi0_linear | ( | const std::vector< double > | rad, |
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
model for the monopole of the two-point correlation function
the function computes:
\[\xi_0(s) = \left[ (b\sigma_8)^2 + \frac{2}{3} f\sigma_8 \cdot b\sigma_8 + \frac{1}{5}(f\sigma_8)^2 \right] \cdot \xi_{\rm DM}(\alpha\cdot s)/\sigma_8^2 + A_0 + A_1/s + A_2/s^2\]
the model has 6 parameters:
the dark matter two-point correlation function is fixed and provided in input
rad | the scale at which the model is computed |
inputs | pointer to the structure that contains the dark matter two-point correlation function and \(\sigma_8(z)\), computed at a given (fixed) cosmology |
parameter | 6D vector containing the input parameters |
Definition at line 97 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.
std::vector< double > cbl::modelling::twopt::xi0_linear_bias_cosmology | ( | const std::vector< double > | rad, |
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
model for the monopole of the two-point correlation function
the function computes:
\[\xi_0(s) = \left[ b^2 + \frac{2}{3}f \cdot b + \frac{1}{5}f^2 \right] \cdot \xi_{\rm DM} \left( \frac{D_V(z)}{D_V^{fid}(z)}\cdot s \right) \]
the model has 1+n parameters:
the dark matter two-point correlation function is computed using the input cosmological parameters
rad | the scale at which the model is computed |
inputs | pointer to the structure that contains the cosmological paramters used to compute the dark matter two-point correlation function |
parameter | 1D vector containing the linear bias |
alpha
Definition at line 375 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.
std::vector< double > cbl::modelling::twopt::xi0_linear_cosmology | ( | const std::vector< double > | rad, |
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
model for the monopole of the two-point correlation function
the function computes:
\[\xi_0(s) = \left[ (b\sigma_8)^2 + \frac{2}{3} f\sigma_8 \cdot b\sigma_8 + \frac{1}{5}(f\sigma_8)^2 \right] \cdot \xi_{\rm DM}(\alpha\cdot s)/\sigma_8^2 + A_0 + A_1/s + A_2/s^2\]
the model has 6 parameters:
the dark matter two-point correlation function is computed using the input cosmological parameters
rad | the scale at which the model is computed |
inputs | pointer to the structure that contains the cosmological paramters used to compute the dark matter two-point correlation function |
parameter | 1D vector containing the linear bias |
Definition at line 330 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.
std::vector< double > cbl::modelling::twopt::xi0_linear_cosmology_clusters | ( | const std::vector< double > | rad, |
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
model for the monopole of the two-point correlation function, the bias is computed by the input cluster masses
the function computes:
\[\xi_0(s) = \left[ (b\sigma_8)^2 + \frac{2}{3} f\sigma_8 \cdot b\sigma_8 + \frac{1}{5}(f\sigma_8)^2 \right] \cdot \xi_{\rm DM}(s)/\sigma_8^2\]
the model has N cosmological parameters
the dark matter two-point correlation function and the linear effective bias are computed using the input cosmological parameters
rad | the scale at which the model is computed |
inputs | pointer to the structure that contains the cosmological paramters used to compute the dark matter two-point correlation function |
parameter | 1D vector containing the linear bias |
alpha
Definition at line 840 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.
std::vector< double > cbl::modelling::twopt::xi0_linear_cosmology_clusters_selection_function | ( | const std::vector< double > | rad, |
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
model for the monopole of the redshift-space two-point correlation function of galaxy clusters, considering the selection function
the function computes:
\[ \xi_0(s) = \xi_{DM}\left(\frac{D_V(z)}{D_V^{fit}(z)}\cdot s\right) b^2\left[1 + \frac{2\beta}{3} + \frac{\beta^2}{5}\right] \]
where \( \beta=\beta(z)=\frac{f(z)}{b(z)} \). The Kaiser factor \( \left[1 + \frac{2\beta}{3} + \frac{\beta^2}{5}\right] \) is computed by cbl::xi_ratio, while the linear growth rate \( f(z) \) is computed by cbl::cosmology::Cosmology::linear_growth_rate
the model has 1+n parameters:
the dark matter two-point correlation function is computed using the input cosmological parameters
rad | the scale at which the model is computed |
inputs | pointer to the structure that contains the cosmological paramters used to compute the dark matter two-point correlation function |
parameter | 1D vector containing the linear bias |
Definition at line 893 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.
std::vector< double > cbl::modelling::twopt::xi0_linear_LinearPoint | ( | const std::vector< double > | rad, |
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
model for the monopole of the two-point correlation function
the function computes:
\(\xi_0(s) = \left[ (b\sigma_8)^2 + \frac{2}{3} f\sigma_8 \cdot b\sigma_8 + \frac{1}{5}(f\sigma_8)^2 \right] \cdot \xi_{\rm DM}(\alpha\cdot s)/\sigma_8^2 + A_0 + A_1/s + A_2/s^2\)
the model has 6 parameters:
the dark matter two-point correlation function is fixed and provided in input
rad | the scale at which the model is computed |
inputs | pointer to the structure that contains the dark matter two-point correlation function and \(\sigma_8(z)\), computed at a given (fixed) cosmology |
parameter | 6D vector containing the input parameters |
Definition at line 218 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.
std::vector< double > cbl::modelling::twopt::xi0_linear_one_cosmo_par_clusters | ( | const std::vector< double > | rad, |
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
model for the monopole of the two-point correlation function, the bias is computed by the input cluster masses, with only \(sigma_8\) as a free parameter
the function computes:
\[\xi_0(s) = \left[ (b\sigma_8)^2 + \frac{2}{3} f\sigma_8 \cdot b\sigma_8 + \frac{1}{5}(f\sigma_8)^2 \right] \cdot \xi_{\rm DM}(s)/\sigma_8^2\]
the model has 1 cosmological parameter
the dark matter two-point correlation function and the linear effective bias are computed using the input cosmological parameters
rad | the scale at which the model is computed |
inputs | pointer to the structure that contains the cosmological paramters used to compute the dark matter two-point correlation function |
parameter | 1D vector containing the cosmological parameter |
Definition at line 770 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.
std::vector< double > cbl::modelling::twopt::xi0_linear_sigma8_bias | ( | const std::vector< double > | rad, |
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
model for the monopole of the two-point correlation function in redshift space
the function computes:
\[\xi_0(s) = \left[ (b\sigma_8)^2 + \frac{2}{3} f(z)\sigma_8(z) \cdot b(z)\sigma_8(z) + \frac{1}{5}(f(z)^2\sigma_8(z)^2) \right] \cdot \xi_{\rm DM}(s)\frac{\sigma_8^2}{\sigma_8^2(z)} \]
the model has 2 parameters:
the dark matter two-point correlation function is computed using the input cosmological parameters
rad | the scale at which the model is computed |
inputs | pointer to the structure that contains the cosmological paramters used to compute the dark matter two-point correlation function |
parameter | 1D vector containing the linear bias |
Definition at line 293 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.
std::vector< double > cbl::modelling::twopt::xi0_linear_sigma8_clusters | ( | const std::vector< double > | rad, |
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
model for the monopole of the two-point correlation function, the bias is computed by the input cluster masses, with only \(sigma_8\) as a free parameter
the function computes:
\[\xi_0(s) = \left[ (b\sigma_8)^2 + \frac{2}{3} f\sigma_8 \cdot b\sigma_8 + \frac{1}{5}(f\sigma_8)^2 \right] \cdot \xi_{\rm DM}(s)/\sigma_8^2\]
the model has 1 parameter: \(\sigma_8\)
the dark matter two-point correlation function and the linear effective bias are computed using the input cosmological parameters
rad | the scale at which the model is computed |
inputs | pointer to the structure that contains the cosmological paramters used to compute the dark matter two-point correlation function |
parameter | 1D vector containing the linear bias |
Definition at line 705 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.
std::vector< double > cbl::modelling::twopt::xi0_linear_two_cosmo_pars_clusters | ( | const std::vector< double > | rad, |
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
model for the monopole of the two-point correlation function, the bias is computed by the input cluster masses, with only \(sigma_8\) as a free parameter
the function computes:
\[\xi_0(s) = \left[ (b\sigma_8)^2 + \frac{2}{3} f\sigma_8 \cdot b\sigma_8 + \frac{1}{5}(f\sigma_8)^2 \right] \cdot \xi_{\rm DM}(s)/\sigma_8^2\]
the model has 2 cosmological parameters
the dark matter two-point correlation function and the linear effective bias are computed using the input cosmological parameters
rad | the scale at which the model is computed |
inputs | pointer to the structure that contains the cosmological paramters used to compute the dark matter two-point correlation function |
parameter | 2D vector containing the cosmological parameters |
the AP parameter
Definition at line 804 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.
std::vector< double > cbl::modelling::twopt::xi0_polynomial_LinearPoint | ( | const std::vector< double > | rad, |
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
model for the monopole of the two-point correlation function
the function computes the monopole as a polynomial of used-defined order
rad | the scale at which the model is computed |
inputs | pointer to the structure that contains the dark matter two-point correlation function and \(\sigma_8(z)\), computed at a given (fixed) cosmology |
parameter | 6D vector containing the input parameters |
Definition at line 133 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.
std::vector< std::vector< double > > cbl::modelling::twopt::xi2D_dispersion | ( | const std::vector< double > | rp, |
const std::vector< double > | pi, | ||
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
model for the 2D two-point correlation function, in Cartesian coordinates
the function computes \(\xi(r_p,\pi)\) with the dispersion model (see e.g. Marulli et al. 2012 http://arxiv.org/abs/1203.1002), which is computed with either cbl::xi2D_lin_model or cbl::xi2D_model
rp | the scale perpendicular to the line of sight at which the model is computed |
pi | the scale parallel to the line of sight at which the model is computed |
inputs | pointer to the structure that contains all the data required to implement the dispersion model |
parameter | 5D vector containing the input parameters |
Definition at line 48 of file ModelFunction_TwoPointCorrelation2D_cartesian.cpp.
vector< double > cbl::modelling::twopt::xi_1halo | ( | const std::vector< double > | rad, |
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
model for the 1-halo term of the monopole of the two-point correlation function
this function computes the 1-halo term of the two-point correlation function by Fourier transforming the 1-halo term of the power spectrum:
\[\xi_{1halo}(r, z) = \frac{1}{2\pi^2}\int_{0}^{k_{max}}{\rm d}k\, k^2P_{1halo}(k, z)\frac{\sin (kr)}{kr}\]
where the 1-halo term of the power spectrum \(P_{1halo}(k, z)\), is computed by cbl::modelling::twopt::Pk_1halo
so the integral that is actually computed is the following:
\[\xi_{1halo}(r, z) = \frac{1}{2\pi^2}\int_{0}^{k_{max}}{\rm d}k\, \left[P_{cs}(k, z)+P_{ss}(k, z)\right]\frac{k\sin (kr)}{r} = \]
\[= \frac{ln(10)}{2\pi^2n_{gal}^2(z)}\int_{0}^{k_{max}}{\rm d}k\, \int_{log(M_{min})}^{log(M_{max})}{\rm d} log(M_h)M_h\, \tilde{u}_h(k, M_h, z)\,n_{h, interp}(M_h, z)\,\left[ 2<N_{cen}N_{sat}>(M_h)\,+ <N_{sat}(N_{sat}-1)>(M_h)\, \tilde{u}_h(k, M_h, z)\right]\frac{k\sin (kr)}{r} \]
where the galaxy number density, \(n_{gal}(z)\) is computed by cbl::modelling::twopt::ng, the Fourier transform of the halo density profile \(\tilde{u}_h(k, M_h, z)\) is computed by cbl::cosmology::Cosmology::density_profile_FourierSpace, \(n_{h, interp}(M_h, z)\) is an interpolation of the halo mass function cosmology::Cosmology::mass_function, \(<N_{cen}N_{sat}>(M_h)\) is computed by cbl::modelling::twopt::NcNs and \(<N_{sat}(N_{sat}-1)>(M_h)\) is computed by cbl::modelling::twopt::NsNs1
rad | the scale at which the model is computed |
inputs | pointer to the structure that contains the fixed input data used to construct the model |
parameter | vector containing the model parameters |
Definition at line 1169 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.
double cbl::modelling::twopt::xi_1halo_zspace | ( | const double | rp, |
const double | pi, | ||
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
model for the 1-halo term of the redshift-space monopole of the two-point correlation function
this function computes the 1-halo term of redshift-space spherically averaged correlation function with a modified version of the Kaiser model (sec. 2.3 of van den Bosch et al. 2012); it is used to derive the model of the 1-halo term of the projected correlation function accounting for residual redshift-space distortions caused by finite integration range
\[\xi_{1halo}(r_p, \pi, z) = \sum_{l=0}^2\xi_{2l}(r, z)\mathcal{P}_{2l}(\mu)\]
where
\[\xi_0(r, z) = \left(1 + \frac{2}{3}\beta + \frac{1}{5}\beta^2\right)\xi_{1halo}(r, z)\,,\]
\[\xi_2(r, z) = \left(\frac{4}{3}\beta + \frac{4}{7}\beta^2\right)\left[\xi_{1halo}(r, z)-3J_3(r, z)\right]\,,\]
\[\xi_4(r, z) = \frac{8}{35}\beta^2\left[\xi_{1halo}(r, z)+\frac{15}{2}J_3(r, z)-\frac{35}{2}J_5(r, z)\right]\,,\]
\[J_n(r, z) = \frac{1}{r^n}\int_0^r\xi_{1halo}(y, z)y^{n-1}{\rm d}y\]
the real-space galaxy correlation function \(\xi_{g, 1halo}(r, z)\) is computed by cbl::modelling::twopt::xi_1halo
rp | the scale perpendicular to the line of sight at which the model is computed |
pi | the scale parallel to the line of sight at which the model is computed |
inputs | pointer to the structure that contains the fixed input data used to construct the model |
parameter | vector containing the model parameters |
Definition at line 1274 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.
vector< double > cbl::modelling::twopt::xi_2halo | ( | const std::vector< double > | rad, |
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
model for the 2-halo term of the monopole of the two-point correlation function
this function computes the 2-halo term of the two-point correlation function by Fourier transforming the 2-halo term of the power spectrum:
\[\xi_{2halo}(r, z) = \frac{1}{2\pi^2}\int_{0}^{k_{max}}{\rm d}k\,k^2P_{2halo}(k, z)\frac{\sin (kr)}{kr}\]
where the 2-halo term of the power spectrum \(P_{2halo}(k, z)\), is computed by cbl::modelling::twopt::Pk_2halo
so the integral that is actually computed is the following:
\[\xi_{2halo}(r, z) = \frac{ln(10)}{2\pi^2n_{gal}^2(z)}\int_{0}^{k_{max}}{\rm d}k\, P_{m, interp}(k, z)\,\int_{log(M_{min})}^{log(M_{max})}{\rm d} log(M_h)M_h\, N_{gal}(M_h)\,n_{h, interp}(M_h, z)\,\,b_{h, interp}(M_h, z)\,\tilde{u}_h(k, M_h, z)\frac{k\sin (kr)}{r} \]
where the galaxy number density, \(n_{gal}(z)\) is computed by cbl::modelling::twopt::ng, \(P_{m, interp}(k, z)\) is an interpolation of the matter power spectrum cbl::cosmology::Cosmology::Pk, the average number of galaxies hosted in a dark matter halo of a given mass, \(N_{gal}(M_h)\), is computed by cbl::modelling::twopt::Navg, \(n_{h, interp}(M_h, z)\) is an interpolation of the halo mass function cosmology::Cosmology::mass_function, \(b_{h, interp}(M_h, z)\) is an interpolation of the halo bias cosmology::Cosmology::bias_halo and the Fourier transform of the halo density profile \(\tilde{u}_h(k, M_h, z)\) is computed by cbl::cosmology::Cosmology::density_profile_FourierSpace
rad | the scale at which the model is computed |
inputs | pointer to the structure that contains the fixed input data used to construct the model |
parameter | vector containing the model parameters |
Definition at line 1190 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.
double cbl::modelling::twopt::xi_2halo_zspace | ( | const double | rp, |
const double | pi, | ||
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
model for the 2-halo term of the redshift-space monopole of the two-point correlation function
this function computes the 2-halo term of redshift-space spherically averaged correlation function with a modified version of the Kaiser model (sec. 2.3 of van den Bosch et al. 2012); it is used to derive the model of the 2-halo term of the projected correlation function accounting for residual redshift-space distortions caused by finite integration range
\[\xi_{2halo}(r_p, \pi, z) = \sum_{l=0}^2\xi_{2l}(r, z)\mathcal{P}_{2l}(\mu)\]
where
\[\xi_0(r, z) = \left(1 + \frac{2}{3}\beta + \frac{1}{5}\beta^2\right)\xi_{2halo}(r, z)\,,\]
\[\xi_2(r, z) = \left(\frac{4}{3}\beta + \frac{4}{7}\beta^2\right)\left[\xi_{2halo}(r, z)-3J_3(r, z)\right]\,,\]
\[\xi_4(r, z) = \frac{8}{35}\beta^2\left[\xi_{2halo}(r, z)+\frac{15}{2}J_3(r, z)-\frac{35}{2}J_5(r, z)\right]\,,\]
\[J_n(r, z) = \frac{1}{r^n}\int_0^r\xi_{2halo}(y, z)y^{n-1}{\rm d}y\]
the real-space galaxy correlation function \(\xi_{g, 2halo}(r, z)\) is computed by cbl::modelling::twopt::xi_2halo
rp | the scale perpendicular to the line of sight at which the model is computed |
pi | the scale parallel to the line of sight at which the model is computed |
inputs | pointer to the structure that contains the fixed input data used to construct the model |
parameter | vector containing the model parameters |
Definition at line 1283 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.
std::vector< double > cbl::modelling::twopt::xi_HOD | ( | const std::vector< double > | rad, |
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
HOD model of the monopole of the two-point correlation function.
the function computes:
\[\xi(r, z) = \xi_{1halo}(r, z)+\xi_{2halo}(r, z)\]
where \(\xi_{1halo}(r, z)\) and \(\xi_{2halo}(r, z)\) are computed by cbl::modelling::twopt::xi_1halo and cbl::modelling::twopt::xi_2halo, respectively
rad | the scale at which the model is computed |
inputs | pointer to the structure that contains the fixed input data used to construct the model |
parameter | vector containing the model parameters |
Definition at line 1212 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.
double cbl::modelling::twopt::xi_HOD_zspace | ( | const double | rp, |
const double | pi, | ||
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
HOD model of the redshift-space monopole of the two-point correlation function.
this function computes the redshift-space spherically averaged correlation function with a modified version of the Kaiser model (sec. 2.3 of van den Bosch et al. 2012); it is used to derive the model of the projected correlation function accounting for residual redshift-space distortions caused by finite integration range
\[\xi(r_p, \pi, z) = \xi_{1halo}(r_p, \pi, z)+\xi_{2halo}(r_p, \pi, z)\]
where \(\xi_{1halo}(r_p, \pi, z)\) and \(\xi_{2halo}(r_p, \pi, z)\) are computed by cbl::modelling::twopt::xi_1halo_zspace and cbl::modelling::twopt::xi_2halo_zspace, respectively
rp | the scale perpendicular to the line of sight at which the model is computed |
pi | the scale parallel to the line of sight at which the model is computed |
inputs | pointer to the structure that contains the fixed input data used to construct the model |
parameter | vector containing the model parameters |
Definition at line 1292 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.
std::vector< std::vector< double > > cbl::modelling::twopt::Xi_l | ( | const std::vector< double > | rr, |
const int | nmultipoles, | ||
const std::string | model, | ||
const std::vector< double > | parameter, | ||
const std::vector< std::shared_ptr< glob::FuncGrid >> | pk_interp, | ||
const double | prec = 1.e-5 , |
||
const double | alpha_perp = 1. , |
||
const double | alpha_par = 1. |
||
) |
the multipole of order l of the two-point correlation function
The function computes the multipoles of the two-point correlation function:
\[ \xi_l(s) = i^l \int \frac{\mathrm{d} k}{2\pi^2} k^2 P_l(k) j_l(ks) \]
where \(j_l(ks)\) are the Bessel functions, and \(P_l(k)\) is computed by cbl::modelling::twopt::Pk_l
rr | vector of scales to compute multipoles |
nmultipoles | the number of (even) multipoles to compute |
model | the \(P(k,\mu)\) model |
parameter | vector containing parameter values |
pk_interp | vector containing power spectrum interpolating functions |
prec | the integral precision |
alpha_perp | the shift transverse to the l.o.s. |
alpha_par | the shift parallel to the l.o.s. |
Definition at line 453 of file ModelFunction_TwoPointCorrelation.cpp.
std::vector< double > cbl::modelling::twopt::Xi_l | ( | const std::vector< double > | rr, |
const std::vector< int > | dataset_order, | ||
const std::vector< bool > | use_pole, | ||
const std::string | model, | ||
const std::vector< double > | parameter, | ||
const std::vector< std::shared_ptr< glob::FuncGrid >> | pk_interp, | ||
const double | prec = 1.e-5 , |
||
const double | alpha_perp = 1. , |
||
const double | alpha_par = 1. |
||
) |
the multipole of order l of the two-point correlation function
The function computes the multipoles of the two-point correlation function:
\[ \xi_l(s) = i^l \int \frac{\mathrm{d} k}{2\pi^2} k^2 P_l(k) j_l(ks) \]
where \(j_l(ks)\) are the Bessel functions, and \(P_l(k)\) is computed by cbl::modelling::twopt::Pk_l
rr | vector of scales to compute multipoles |
dataset_order | vector that specify the multipole to be computed for each scale |
use_pole | vector of booleans specifying if a given multipole should be computed |
model | the \(P(k,\mu)\) model |
parameter | vector containing parameter values |
pk_interp | vector containing power spectrum interpolating functions |
prec | the integral precision |
alpha_perp | the shift transverse to the l.o.s. |
alpha_par | the shift parallel to the l.o.s. |
Definition at line 471 of file ModelFunction_TwoPointCorrelation.cpp.
double cbl::modelling::twopt::Xi_polar | ( | const double | rad_fid, |
const double | mu_fid, | ||
const double | alpha_perpendicular, | ||
const double | alpha_parallel, | ||
const std::vector< std::shared_ptr< cbl::glob::FuncGrid >> | xi_multipoles | ||
) |
the polar two-point correlation function
The function computes the polar two-point correlation function from its multipoles as expressed in Kazin et al. 2013 (https://arxiv.org/pdf/1303.4391.pdf, appendix A)
\[ \xi(s_{\mathrm{true}}, \mu_{\mathrm{true}}) = \sum\xi_l(s_{\mathrm{true}}(s_{\mathrm{fid}}, \mu_{\mathrm{fid}}, \alpha_{\perp}, \alpha_{\parallel})) L_l(\mu_{\mathrm{true}}(\mu_{\mathrm{fid}}, \alpha_{\perp}, \alpha_{\parallel})) \]
where \(\xi_l(s)\) are the two-point correlation function monopoles up to l=4, and \( \mathcal{L}_l(\mu)\) are the Legendre polynomial.
The relations between fiducial and true quantities are:
\[ s_{\mathrm{true}} = s_{\mathrm{fid}} \sqrt{\alpha_{\|}^{2} \mu_{\mathrm{fid}}^{2}+\alpha_{\perp}^2\left(1-\mu_{\mathrm{fid}}^2\right)} \]
\[ \mu_{\mathrm{true}} = \mu_{\mathrm{fid}} \frac{\alpha_{\|}}{\sqrt{\alpha_{\|}^{2} \mu_{\mathrm{fid}}^{2}+\alpha_{\perp}^2\left(1-\mu_{\mathrm{fid}}^2\right)}} \]
rad_fid | fiducial separation |
mu_fid | fiducial \(\mu\) |
alpha_perpendicular | Alcock-Paczynski perpendicular parameter |
alpha_parallel | Alcock-Paczynski perpendicular parameter |
xi_multipoles | vector containing two-point correlation function multipoles interpolating functions |
Definition at line 492 of file ModelFunction_TwoPointCorrelation.cpp.
std::vector< std::vector< double > > cbl::modelling::twopt::Xi_rppi | ( | const std::vector< double > | rp, |
const std::vector< double > | pi, | ||
const std::string | model, | ||
const std::vector< double > | parameter, | ||
const std::vector< std::shared_ptr< glob::FuncGrid >> | pk_interp, | ||
const double | prec = 1.e-5 , |
||
const double | alpha_perp = 1. , |
||
const double | alpha_par = 1. |
||
) |
the cartesian two-point correlation function
The function computes the cartesian two-point correlation function:
\[ \xi_(r_p, \pi) = \xi_0(s) + \xi_2(s) \mathcal{L}_2(\mu)+ \xi_4(s) \mathcal{L}_4(\mu) \]
where \(xi_0(s), \xi_2(s), \xi_4(s)\) are the two-point correlation function monopoles and \( \mathcal{L}_l(\mu)\) are the Legendre polynomial.
rp | vector of scales transverse to the line of sight |
pi | vector of scales parallel to the line of sight |
model | the \(P(k,\mu)\) model |
parameter | vector containing parameter values |
pk_interp | vector containing power spectrum interpolating functions |
prec | the integral precision |
alpha_perp | the shift transverse to the l.o.s. |
alpha_par | the shift parallel to the l.o.s. |
Definition at line 512 of file ModelFunction_TwoPointCorrelation.cpp.
std::vector< std::vector< double > > cbl::modelling::twopt::xi_Wedges | ( | const std::vector< double > | rr, |
const int | nWedges, | ||
const std::vector< std::vector< double >> | mu_integral_limits, | ||
const std::string | model, | ||
const std::vector< double > | parameter, | ||
const std::vector< std::shared_ptr< glob::FuncGrid >> | pk_interp, | ||
const double | prec = 1.e-5 , |
||
const double | alpha_perp = 1 , |
||
const double | alpha_par = 1. |
||
) |
the model wedges of the two-point correlation function
this function computes the wedges of the two-point correlation function either with the de-wiggled model or with the mode-coupling model (Kazin et al. 2012):
\[ \xi(\Delta \mu, s) = \xi_0(s)+\frac{1}{2} \left( \frac{ \mu_{max}^3- \mu_{min}^3}{\mu_{max}-\mu_{min}} -1 \right)\xi_2(s)+ \frac{1}{8} \left( \frac{ 7 \left(\mu_{max}^5-\mu_{min}^5\right)-10 \left(\mu_{max}^3- \mu_{min}^3 \right)}{\mu_{max}-\mu_{min}}+3 \right) \xi_4(s). \]
where \(\xi_0(s), \xi_2(s), \xi_4(s)\) are the two-point correlation function multipoles computed by cbl::modelling::twopt::Xi_l
rr | vector of scales to compute wedges |
nWedges | the number of wedges |
mu_integral_limits | the \(\mu\) integral limits used to measure the wedges |
model | the \(P(k,\mu)\) model; the possible options are: dispersion_dewiggled, dispersion_modecoupling |
parameter | vector containing parameter values |
pk_interp | vector containing power spectrum interpolating functions |
prec | the integral precision |
alpha_perp | the shift transverse to the l.o.s. |
alpha_par | the shift parallel to the l.o.s. |
Definition at line 70 of file ModelFunction_TwoPointCorrelation_wedges.cpp.
std::vector< double > cbl::modelling::twopt::xi_Wedges | ( | const std::vector< double > | rr, |
const std::vector< int > | dataset_order, | ||
const std::vector< std::vector< double >> | mu_integral_limits, | ||
const std::string | model, | ||
const std::vector< double > | parameter, | ||
const std::vector< std::shared_ptr< glob::FuncGrid >> | pk_interp, | ||
const double | prec = 1.e-5 , |
||
const double | alpha_perp = 1. , |
||
const double | alpha_par = 1. |
||
) |
the wedge of the two-point correlation function
The function computes the wedges of the two-point correlation function (Kazin et al. 2012):
\[ \xi(\Delta \mu, s) = \xi_0(s)+\frac{1}{2} \left( \frac{ \mu_{max}^3- \mu_{min}^3}{\mu_{max}-\mu_{min}} -1 \right)\xi_2(s)+ \frac{1}{8} \left( \frac{ 7 \left(\mu_{max}^5-\mu_{min}^5\right)-10 \left(\mu_{max}^3- \mu_{min}^3 \right)}{\mu_{max}-\mu_{min}}+3 \right) \xi_4(s). \]
where \(\xi_0(s), \xi_2(s), \xi_4(s)\) are the two-point correlation function multipoles
rr | vector of scales to compute wedges |
dataset_order | vector that specify the wedges to be computed for each scale |
mu_integral_limits | the \(\mu\) integral limits used to measure the wedges |
model | the \(P(k,\mu)\) model; the possible options are: dispersion_dewiggled, dispersion_modecoupling |
parameter | vector containing parameter values |
pk_interp | vector containing power spectrum interpolating functions |
prec | the integral precision |
alpha_perp | the shift transverse to the l.o.s. |
alpha_par | the shift parallel to the l.o.s. |
Definition at line 47 of file ModelFunction_TwoPointCorrelation_wedges.cpp.
double cbl::modelling::twopt::xi_zspace | ( | FunctionVectorVectorPtrVectorRef | func, |
const double | rp, | ||
const double | pi, | ||
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
function used to compute the redshift-space monopole of the two-point correlation function
this function is used to compute the redshift-space spherically averaged correlation function with a modified version of the Kaiser model (sec. 2.3 of van den Bosch et al. 2012); it is used to derive the model projected correlation function accounting for residual redshift-space distortions caused by finite integration range
\[\xi(r_p, \pi, z) = \sum_{l=0}^2\xi_{2l}(r, z)\mathcal{P}_{2l}(\mu)\]
where
\[\xi_0(r, z) = \left(1 + \frac{2}{3}\beta + \frac{1}{5}\beta^2\right)\xi(r, z)\,,\]
\[\xi_2(r, z) = \left(\frac{2}{3}\beta + \frac{4}{7}\beta^2\right)\left[\xi(r, z)-3J_3(r, z)\right]\,,\]
\[\xi_4(r, z) = \frac{8}{35}\beta^2\left[\xi(r, z)+\frac{15}{2}J_3(r, z)-\frac{35}{2}J_5(r, z)\right]\,,\]
\[J_n(r, z) = \frac{1}{r^n}\int_0^r\xi(y, z)y^{n-1}{\rm d}y\]
the real-space galaxy correlation function \(\xi(r, z)\) is either the 1-halo, the 2-halo, or the full-shape real-space correlation function, computed by either cbl::modelling::twopt::xi_1halo, cbl::modelling::twopt::xi_2halo, or cbl::modelling::twopt::xi_HOD, respectively
func | the two-point correlation function that will be integrated (it can be either the 1-halo, the 2-halo, or the full-shape correlation function) |
rp | the scale perpendicular to the line of sight at which the model is computed |
pi | the scale parallel to the line of sight at which the model is computed |
inputs | pointer to the structure that contains the fixed input data used to construct the model |
parameter | vector containing the model parameters |
Definition at line 1232 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.
cbl::glob::FuncGrid cbl::modelling::twopt::Xil_interp | ( | const std::vector< double > | kk, |
const int | l, | ||
const std::string | model, | ||
const std::vector< double > | parameter, | ||
const std::vector< std::shared_ptr< glob::FuncGrid >> | pk_interp, | ||
const double | prec = 1.e-5 , |
||
const double | alpha_perp = 1. , |
||
const double | alpha_par = 1. |
||
) |
the interpolating function of multipole expansion of the two-point correlation function at a given order l
The function computes the multipoles of the two-point correlation function:
\[ \xi_l(s) = i^l \int \frac{\mathrm{d} k}{2\pi^2} k^2 P_l(k) j_l(ks) \]
where \(j_l(ks)\) are the Bessel functions, and \(P_l(k)\) is computed by cbl::modelling::twopt::Pk_l
kk | the wave vector module vector |
l | the order of the expansion |
model | the \(P(k,\mu)\) model |
parameter | vector containing parameter values |
pk_interp | vector containing power spectrum interpolating functions |
prec | the integral precision |
alpha_perp | the shift transverse to the l.o.s. |
alpha_par | the shift parallel to the l.o.s. |
Definition at line 437 of file ModelFunction_TwoPointCorrelation.cpp.
std::vector< double > cbl::modelling::twopt::xiMultipoles | ( | const std::vector< double > | rad, |
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
return multipoles of the two-point correlation function
The functions computes the multipoles of the two-point correlation function
\[ \xi_l(s) = i^l \int \frac{\mathrm{d} k}{2\pi^2} k^2 P_l(k) j_l(ks); \]
where \(j_l(ks)\) are the Bessel functions.
The function takes as inputs four fundamental parameters
rad | the scale at which the model is computed |
inputs | pointer to the structure that contains the data required to construct the model |
parameter | 4D vector containing the input parameters |
Definition at line 48 of file ModelFunction_TwoPointCorrelation_multipoles.cpp.
std::vector< double > cbl::modelling::twopt::xiMultipoles_BAO | ( | const std::vector< double > | rad, |
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
return multipoles of the two-point correlation function, intended for anisotropic BAO measurements (Ross et al. 2017). In only works with monopole and quadrupole.
The functions computes the multipoles of the two-point correlation function:
\[ \xi_0(s) = B_0\xi_0(s, \alpha_{\perp}, \alpha_{\parallel})+A_0^0+\frac{A_0^1}{s}+\frac{A_0^2}{s^2} \]
\[ \xi_2(s) = \frac{5}{2}\left[B_2\xi_{\mu2}(s, \alpha_{\perp}, \alpha_{\parallel})-B_0\xi_0(s, \alpha_{\perp}, \alpha_{\parallel})\right] +A_2^0+\frac{A_2^1}{s}+\frac{A_2^2}{s^2} \]
where \(\xi_0(s, \alpha_{\perp}, \alpha_{\parallel})\) is the monopole computed at the fiducial cosmology, \(\xi_{\mu2}(s, \alpha_{\perp}, \alpha_{\parallel}) = 3\int_0^1\mathrm{d}\mu\mu^2\xi(s, \mu, \alpha_{\perp}, \alpha_{\parallel})\).
The function takes as inputs ten parameters
rad | the scale at which the model is computed |
inputs | pointer to the structure that contains the data required to construct the model |
parameter | 10D vector containing the input parameters |
Definition at line 192 of file ModelFunction_TwoPointCorrelation_multipoles.cpp.
std::vector< double > cbl::modelling::twopt::xiMultipoles_sigma8_bias | ( | const std::vector< double > | rad, |
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
return multipoles of the two-point correlation function
The functions computes the multipoles of the two-point correlation function
\[ \xi_l(s) = i^l \int \frac{\mathrm{d} k}{2\pi^2} k^2 P_l(k) j_l(ks); \]
where \(j_l(ks)\) are the Bessel functions.
The function takes as inputs 2 parameters
rad | the scale at which the model is computed |
inputs | pointer to the structure that contains the data required to construct the model |
parameter | vector containing the input parameters |
Definition at line 157 of file ModelFunction_TwoPointCorrelation_multipoles.cpp.
std::vector< double > cbl::modelling::twopt::xiWedges | ( | const std::vector< double > | rad, |
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
the model wedges of the two-point correlation function
this functions computes the wedges of the two-point either with the de-wiggled model or with the mode-coupling model; specifically, the wedges are computed by cbl::modelling::twopt::xi_Wedges
the wedges of the two-point correlation functions are defined as follows:
\[ \xi_w(s) = \frac{1}{\mu_{max}-\mu_{min}} \int_{\mu_{min}}^{\mu_{max}} \mathrm{\mu} \xi(s', \mu'); \]
where \( \xi(s', \mu')\) is the polar two-point correlation function computed at shifted positions \(s' = s\sqrt{\mu^2\alpha^2_{\parallel}+(1-\mu^2)\alpha^2_{\perp}}\), \(\mu' = \mu\alpha_{\parallel}/\sqrt{\mu^2\alpha^2_{\parallel}+(1-\mu^2)\alpha^2_{\perp}}\)
rad | the scale at which the model is computed |
inputs | pointer to the structure that contains the de-wiggled power spectrum, the number of wedges and \(\sigma_8(z)\), computed at a given (fixed) cosmology |
parameter | vector containing the input parameters |
Definition at line 94 of file ModelFunction_TwoPointCorrelation_wedges.cpp.
std::vector< double > cbl::modelling::twopt::xiWedges_BAO | ( | const std::vector< double > | rad, |
const std::shared_ptr< void > | inputs, | ||
std::vector< double > & | parameter | ||
) |
return the wedges of the two-point correlation function, intended for anisotropic BAO measurements
the wedges of the two-point correlation function are computed as follows (Ross et al. 2017):
\[ \xi_{\perp}(s) = B_{\perp}\xi_{\perp}(s, \alpha_{\perp}, \alpha_{\parallel})+A_{\perp}^0+\frac{A_{\perp}^1}{s}+\frac{A_{\perp}^2}{s^2}; \\ \xi_{\parallel}(s) = B_{\parallel}\xi_{\parallel}(s, \alpha_{\parallel}, \alpha_{\parallel})+A_{\parallel}^0+\frac{A_{\parallel}^1}{s}+\frac{A_{\parallel}^2}{s^2}; \\ \]
where \(\xi_{\perp}\), \(\xi_{\parallel}\) are the two wedges of the two-point correlation function.
The function takes as inputs ten parameters
rad | the scale at which the model is computed |
inputs | pointer to the structure that contains the de-wiggled power spectrum, the number of wedges and \(\sigma_8(z)\), computed at a given (fixed) cosmology |
parameter | 10D vector containing the input parameters |
Definition at line 203 of file ModelFunction_TwoPointCorrelation_wedges.cpp.