CosmoBolognaLib
Free Software C++/Python libraries for cosmological calculations
cbl::modelling::twopt Namespace Reference

The namespace of the two-point correlation function modelling More...

Classes

struct  STR_data_model
 the structure STR_data_model More...
 
struct  STR_data_HOD
 the STR_data_HOD structure More...
 
class  Modelling_TwoPointCorrelation
 The class Modelling_TwoPointCorrelation. More...
 
class  Modelling_TwoPointCorrelation1D
 The class Modelling_TwoPointCorrelation1D. More...
 
class  Modelling_TwoPointCorrelation1D_angular
 The class Modelling_TwoPointCorrelation1D_angular. More...
 
class  Modelling_TwoPointCorrelation1D_filtered
 The class Modelling_TwoPointCorrelation1D_filtered. More...
 
class  Modelling_TwoPointCorrelation1D_monopole
 The class Modelling_TwoPointCorrelation1D_monopole. More...
 
class  Modelling_TwoPointCorrelation2D
 The class Modelling_TwoPointCorrelation2D. More...
 
class  Modelling_TwoPointCorrelation2D_cartesian
 The class Modelling_TwoPointCorrelation2D_cartesian. More...
 
class  Modelling_TwoPointCorrelation2D_polar
 The class Modelling_TwoPointCorrelation2D_polar. More...
 
class  Modelling_TwoPointCorrelation_deprojected
 The class Modelling_TwoPointCorrelation_deprojected. More...
 
class  Modelling_TwoPointCorrelation_multipoles
 The class Modelling_TwoPointCorrelation_multipoles. More...
 
class  Modelling_TwoPointCorrelation_projected
 The class Modelling_TwoPointCorrelation_projected. More...
 
class  Modelling_TwoPointCorrelation_wedges
 The class Modelling_TwoPointCorrelation_wedges. More...
 

Functions

std::vector< double > true_k_mu_AP (const double kk, const double mu, const double alpha_perp, const double alpha_par)
 true k and \(\mu\) power spectrum coordinates as a function of observed ones More...
 
double Pk_l (const double kk, const int l, const std::string model, const std::vector< double > parameter, const std::vector< std::shared_ptr< glob::FuncGrid >> pk_interp, const double prec=1.e-5, const double alpha_perp=1., const double alpha_par=1.)
 the multipole of order l of the power spectrum More...
 
std::vector< double > Pk_l (const std::vector< double > kk, const int l, const std::string model, const std::vector< double > parameter, const std::vector< std::shared_ptr< glob::FuncGrid >> pk_interp, const double prec=1.e-5, const double alpha_perp=1., const double alpha_par=1.)
 the multipole of order l of the power spectrum More...
 
cbl::glob::FuncGrid Xil_interp (const std::vector< double > kk, const int l, const std::string model, const std::vector< double > parameter, const std::vector< std::shared_ptr< glob::FuncGrid >> pk_interp, const double prec=1.e-5, const double alpha_perp=1., const double alpha_par=1.)
 the interpolating function of multipole expansion of the two-point correlation function at a given order l More...
 
std::vector< std::vector< double > > Xi_l (const std::vector< double > rr, const int nmultipoles, const std::string model, const std::vector< double > parameter, const std::vector< std::shared_ptr< glob::FuncGrid >> pk_interp, const double prec=1.e-5, const double alpha_perp=1., const double alpha_par=1.)
 the multipole of order l of the two-point correlation function More...
 
std::vector< double > Xi_l (const std::vector< double > rr, const std::vector< int > dataset_order, const std::vector< bool > use_pole, const std::string model, const std::vector< double > parameter, const std::vector< std::shared_ptr< glob::FuncGrid >> pk_interp, const double prec=1.e-5, const double alpha_perp=1., const double alpha_par=1.)
 the multipole of order l of the two-point correlation function More...
 
std::vector< std::vector< double > > Xi_rppi (const std::vector< double > rp, const std::vector< double > pi, const std::string model, const std::vector< double > parameter, const std::vector< std::shared_ptr< glob::FuncGrid >> pk_interp, const double prec=1.e-5, const double alpha_perp=1., const double alpha_par=1.)
 the cartesian two-point correlation function More...
 
double Xi_polar (const double rad_fid, const double mu_fid, const double alpha_perpendicular, const double alpha_parallel, const std::vector< std::shared_ptr< cbl::glob::FuncGrid >> xi_multipoles)
 the polar two-point correlation function More...
 
std::vector< double > wp_from_Xi_rppi (const std::vector< double > rp, const double pimax, const std::string model, const std::vector< double > parameter, const std::vector< std::shared_ptr< glob::FuncGrid >> pk_interp, const double prec=1.e-5, const double alpha_perp=1., const double alpha_par=1.)
 the projected two-point correlation function More...
 
std::vector< std::vector< double > > damped_Pk_terms (const std::vector< double > kk, const double linear_growth_rate, const double SigmaS, const std::shared_ptr< cbl::glob::FuncGrid > PkDM)
 the power spectrum terms obtained integrating the redshift space 2D power spectrum More...
 
std::vector< double > damped_Xi (const std::vector< double > ss, const double bias, const double linear_growth_rate, const double SigmaS, const std::vector< double > kk, const std::shared_ptr< cbl::glob::FuncGrid > PkDM)
 the damped two-point correlation monopole; from Sereno et al. 2015 More...
 
double Pkmu (const double kk, const double mu, const std::string model, const std::vector< double > parameter, const std::vector< std::shared_ptr< glob::FuncGrid >> pk_interp, const double alpha_perp=1., const double alpha_par=1.)
 the power spectrum as a function of k and \(\mu\) More...
 
double Pkmu_DeWiggled (const double kk, const double mu, const double sigmaNL_perp, const double sigmaNL_par, const double linear_growth_rate, const double bias, const double SigmaS, const std::shared_ptr< cbl::glob::FuncGrid > Pk, const std::shared_ptr< cbl::glob::FuncGrid > Pk_NW)
 the redshift-space galaxy power spectrum, as a function of \(k\) and \(\mu\), predicted by the de-wiggled model More...
 
double Pkmu_ModeCoupling (const double kk, const double mu, const double linear_growth_rate, const double bias, const double sigmav, const double AMC, const std::shared_ptr< cbl::glob::FuncGrid > PkLin, const std::shared_ptr< cbl::glob::FuncGrid > PkMC)
 the redshift-space galaxy power spectrum, as a function of \(k\) and \(\mu\), predicted by the mode-coupling model More...
 
double Pkmu_dispersion (const double kk, const double mu, const std::string DFoG, const double linear_growth_rate, const double bias, const double sigmav, const std::shared_ptr< cbl::glob::FuncGrid > Pklin)
 the redshift-space galaxy power spectrum, as a function of \(k\) and \(\mu\), predicted by the dispersion model More...
 
double Pkmu_Scoccimarro (const double kk, const double mu, const std::string DFoG, const double linear_growth_rate, const double bias, const double sigmav, const std::shared_ptr< cbl::glob::FuncGrid > Pk_DeltaDelta, const std::shared_ptr< cbl::glob::FuncGrid > Pk_DeltaTheta, const std::shared_ptr< cbl::glob::FuncGrid > Pk_ThetaTheta)
 the redshift-space galaxy power spectrum, as a function of \(k\) and \(\mu\), predicted by the Scoccimarro model More...
 
double Pkmu_Scoccimarro_fitPezzotta (const double kk, const double mu, const std::string DFoG, const double linear_growth_rate, const double bias, const double sigmav, const double kd, const double kt, const std::shared_ptr< cbl::glob::FuncGrid > Pklin, const std::shared_ptr< cbl::glob::FuncGrid > Pknonlin)
 the redshift-space galaxy power spectrum, as a function of \(k\) and \(\mu\), predicted by the Scoccimarro model More...
 
double Pkmu_Scoccimarro_fitBel (const double kk, const double mu, const std::string DFoG, const double linear_growth_rate, const double bias, const double sigmav, const double kd, const double bb, const double a1, const double a2, const double a3, const std::shared_ptr< cbl::glob::FuncGrid > Pklin, const std::shared_ptr< cbl::glob::FuncGrid > Pknonlin)
 the redshift-space galaxy power spectrum, as a function of \(k\) and \(\mu\), predicted by the Scoccimarro model More...
 
double Pkmu_TNS (const double kk, const double mu, const std::string DFoG, const double linear_growth_rate, const double bias, const double sigmav, const std::shared_ptr< cbl::glob::FuncGrid > Pk_DeltaDelta, const std::shared_ptr< cbl::glob::FuncGrid > Pk_DeltaTheta, const std::shared_ptr< cbl::glob::FuncGrid > Pk_ThetaTheta, const std::shared_ptr< cbl::glob::FuncGrid > Pk_A11, const std::shared_ptr< cbl::glob::FuncGrid > Pk_A12, const std::shared_ptr< cbl::glob::FuncGrid > Pk_A22, const std::shared_ptr< cbl::glob::FuncGrid > Pk_A23, const std::shared_ptr< cbl::glob::FuncGrid > Pk_A33, const std::shared_ptr< cbl::glob::FuncGrid > Pk_B12, const std::shared_ptr< cbl::glob::FuncGrid > Pk_B13, const std::shared_ptr< cbl::glob::FuncGrid > Pk_B14, const std::shared_ptr< cbl::glob::FuncGrid > Pk_B22, const std::shared_ptr< cbl::glob::FuncGrid > Pk_B23, const std::shared_ptr< cbl::glob::FuncGrid > Pk_B24, const std::shared_ptr< cbl::glob::FuncGrid > Pk_B33, const std::shared_ptr< cbl::glob::FuncGrid > Pk_B34, const std::shared_ptr< cbl::glob::FuncGrid > Pk_B44)
 the redshift-space galaxy power spectrum, as a function of \(k\) and \(\mu\), predicted by the TNS (Taruya, Nishimichi and Saito) model More...
 
double Pkmu_eTNS (const double kk, const double mu, const std::string DFoG, const double linear_growth_rate, const double bias, const double bias2, const double sigmav, const double Ncorr, const std::shared_ptr< cbl::glob::FuncGrid > Pk_DeltaDelta, const std::shared_ptr< cbl::glob::FuncGrid > Pk_DeltaTheta, const std::shared_ptr< cbl::glob::FuncGrid > Pk_ThetaTheta, const std::shared_ptr< cbl::glob::FuncGrid > Pk_A11, const std::shared_ptr< cbl::glob::FuncGrid > Pk_A12, const std::shared_ptr< cbl::glob::FuncGrid > Pk_A22, const std::shared_ptr< cbl::glob::FuncGrid > Pk_A23, const std::shared_ptr< cbl::glob::FuncGrid > Pk_A33, const std::shared_ptr< cbl::glob::FuncGrid > Pk_B12, const std::shared_ptr< cbl::glob::FuncGrid > Pk_B13, const std::shared_ptr< cbl::glob::FuncGrid > Pk_B14, const std::shared_ptr< cbl::glob::FuncGrid > Pk_B22, const std::shared_ptr< cbl::glob::FuncGrid > Pk_B23, const std::shared_ptr< cbl::glob::FuncGrid > Pk_B24, const std::shared_ptr< cbl::glob::FuncGrid > Pk_B33, const std::shared_ptr< cbl::glob::FuncGrid > Pk_B34, const std::shared_ptr< cbl::glob::FuncGrid > Pk_B44, const std::shared_ptr< cbl::glob::FuncGrid > Pk_b2d, const std::shared_ptr< cbl::glob::FuncGrid > Pk_b2v, const std::shared_ptr< cbl::glob::FuncGrid > Pk_b22, const std::shared_ptr< cbl::glob::FuncGrid > Pk_bs2d, const std::shared_ptr< cbl::glob::FuncGrid > Pk_bs2v, const std::shared_ptr< cbl::glob::FuncGrid > Pk_b2s2, const std::shared_ptr< cbl::glob::FuncGrid > Pk_bs22, const std::shared_ptr< cbl::glob::FuncGrid > sigma32Pklin)
 the redshift-space galaxy power spectrum, as a function of \(k\) and \(\mu\), predicted by the extended TNS (Taruya, Nishimichi and Saito) model More...
 
std::vector< double > xi0_BAO_sigmaNL (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 model for the BAO signal in the monopole of the two-point correlation function More...
 
std::vector< double > xi0_linear (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 model for the monopole of the two-point correlation function More...
 
std::vector< double > xi0_linear_LinearPoint (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 model for the monopole of the two-point correlation function More...
 
std::vector< double > xi0_polynomial_LinearPoint (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 model for the monopole of the two-point correlation function More...
 
std::vector< double > xi0_linear_sigma8_bias (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 model for the monopole of the two-point correlation function in redshift space More...
 
std::vector< double > xi0_linear_cosmology (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 model for the monopole of the two-point correlation function More...
 
std::vector< double > xi0_damped_bias_sigmaz (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 the damped two-point correlation monopole; from Sereno et al. 2015 More...
 
std::vector< double > xi0_damped_scaling_relation_sigmaz (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 the damped two-point correlation monopole; from Sereno et al. 2015 More...
 
std::vector< double > xi0_damped_scaling_relation_sigmaz_cosmology (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 the damped two-point correlation monopole; from Sereno et al. 2015 More...
 
std::vector< double > xi0_linear_sigma8_clusters (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 model for the monopole of the two-point correlation function, the bias is computed by the input cluster masses, with only \(sigma_8\) as a free parameter More...
 
std::vector< double > xi0_linear_one_cosmo_par_clusters (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 model for the monopole of the two-point correlation function, the bias is computed by the input cluster masses, with only \(sigma_8\) as a free parameter More...
 
std::vector< double > xi0_linear_two_cosmo_pars_clusters (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 model for the monopole of the two-point correlation function, the bias is computed by the input cluster masses, with only \(sigma_8\) as a free parameter More...
 
std::vector< double > xi0_linear_cosmology_clusters (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 model for the monopole of the two-point correlation function, the bias is computed by the input cluster masses More...
 
std::vector< double > xi0_linear_bias_cosmology (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 model for the monopole of the two-point correlation function More...
 
std::vector< double > xi0_linear_cosmology_clusters_selection_function (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 model for the monopole of the redshift-space two-point correlation function of galaxy clusters, considering the selection function More...
 
std::vector< std::vector< double > > xi2D_dispersion (const std::vector< double > rp, const std::vector< double > pi, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 model for the 2D two-point correlation function, in Cartesian coordinates More...
 
std::vector< double > xiMultipoles (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 return multipoles of the two-point correlation function More...
 
std::vector< double > xiMultipoles_BAO (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 return multipoles of the two-point correlation function, intended for anisotropic BAO measurements (Ross et al. 2017). In only works with monopole and quadrupole. More...
 
std::vector< double > xiMultipoles_sigma8_bias (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 return multipoles of the two-point correlation function More...
 
std::vector< std::vector< double > > xi_Wedges (const std::vector< double > rr, const int nWedges, const std::vector< std::vector< double >> mu_integral_limits, const std::string model, const std::vector< double > parameter, const std::vector< std::shared_ptr< glob::FuncGrid >> pk_interp, const double prec=1.e-5, const double alpha_perp=1, const double alpha_par=1.)
 the model wedges of the two-point correlation function More...
 
std::vector< double > xi_Wedges (const std::vector< double > rr, const std::vector< int > dataset_order, const std::vector< std::vector< double >> mu_integral_limits, const std::string model, const std::vector< double > parameter, const std::vector< std::shared_ptr< glob::FuncGrid >> pk_interp, const double prec=1.e-5, const double alpha_perp=1., const double alpha_par=1.)
 the wedge of the two-point correlation function More...
 
std::vector< double > xiWedges (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 the model wedges of the two-point correlation function More...
 
std::vector< double > xiWedges_BAO (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 return the wedges of the two-point correlation function, intended for anisotropic BAO measurements More...
 
Functions of the Halo Occupation Distribution (HOD) models
double Ncen (const double Mass, const double lgMmin, const double sigmalgM)
 the average number of central galaxies hosted in a dark matter halo of a given mass More...
 
double Nsat (const double Mass, const double lgMmin, const double sigmalgM, const double lgM0, const double lgM1, const double alpha)
 the average number of satellite galaxies hosted in a dark matter halo of a given mass More...
 
double Navg (const double Mass, const double lgMmin, const double sigmalgM, const double lgM0, const double lgM1, const double alpha)
 the average number of galaxies hosted in a dark matter halo of a given mass More...
 
double ng (const double lgMmin, const double sigmalgM, const double lgM0, const double lgM1, const double alpha, const std::shared_ptr< void > inputs)
 the galaxy number density More...
 
double bias (const double Mmin, const double sigmalgM, const double M0, const double M1, const double alpha, const std::shared_ptr< void > inputs)
 the mean galaxy bias More...
 
double NcNs (const double Mass, const double lgMmin, const double sigmalgM, const double lgM0, const double lgM1, const double alpha)
 the mean number of central-satellite galaxy pairs More...
 
double NsNs1 (const double Mass, const double lgMmin, const double sigmalgM, const double lgM0, const double lgM1, const double alpha)
 the mean number of satellite-satellite galaxy pairs More...
 
double Pk_cs (const double kk, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 model for the central-satellite part of the 1-halo term of the power spectrum More...
 
double Pk_ss (const double kk, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 model for the satellite-satellite part of the 1-halo term of the power spectrum More...
 
double Pk_1halo (const double kk, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 model for the 1-halo term of the power spectrum More...
 
double Pk_2halo (const double kk, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 model for the 2-halo term of the power spectrum More...
 
double Pk_HOD (const double kk, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 HOD model of the power spectrum. More...
 
std::vector< double > xi_1halo (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 model for the 1-halo term of the monopole of the two-point correlation function More...
 
std::vector< double > xi_2halo (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 model for the 2-halo term of the monopole of the two-point correlation function More...
 
std::vector< double > xi_HOD (const std::vector< double > rad, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 HOD model of the monopole of the two-point correlation function. More...
 
double xi_zspace (FunctionVectorVectorPtrVectorRef func, const double rp, const double pi, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 function used to compute the redshift-space monopole of the two-point correlation function More...
 
double xi_1halo_zspace (const double rp, const double pi, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 model for the 1-halo term of the redshift-space monopole of the two-point correlation function More...
 
double xi_2halo_zspace (const double rp, const double pi, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 model for the 2-halo term of the redshift-space monopole of the two-point correlation function More...
 
double xi_HOD_zspace (const double rp, const double pi, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 HOD model of the redshift-space monopole of the two-point correlation function. More...
 
std::vector< double > wp_from_xi_approx (FunctionVectorVectorPtrVectorRef func, const std::vector< double > rp, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 function used to compute the projected two-point correlation function More...
 
std::vector< double > wp_1halo_approx (const std::vector< double > rp, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 model for the 1-halo term of the projected two-point correlation function More...
 
std::vector< double > wp_2halo_approx (const std::vector< double > rp, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 model for the 2-halo term of the projected two-point correlation function More...
 
std::vector< double > wp_HOD_approx (const std::vector< double > rp, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 HOD model of the projected two-point correlation function. More...
 
std::vector< double > wp_from_xi (FunctionDoubleDoubleDoublePtrVectorRef func, const std::vector< double > rp, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 function used to compute the projected two-point correlation function More...
 
std::vector< double > wp_1halo (const std::vector< double > rp, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 model for the 1-halo term of the projected two-point correlation function More...
 
std::vector< double > wp_2halo (const std::vector< double > rp, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 model for the 2-halo term of the projected two-point correlation function More...
 
std::vector< double > wp_HOD (const std::vector< double > rp, const std::shared_ptr< void > inputs, std::vector< double > &parameter)
 HOD model of the projected two-point correlation function. More...
 

Detailed Description

The namespace of the two-point correlation function modelling

The modelling::twopt namespace contains all the functions and classes to model the two-point correlation function

Function Documentation

◆ bias()

double cbl::modelling::twopt::bias ( const double  Mmin,
const double  sigmalgM,
const double  M0,
const double  M1,
const double  alpha,
const std::shared_ptr< void >  inputs 
)

the mean galaxy bias

this function computes the mean galaxy bias (e.g. Berlind & Weinberg 2002, van den Bosch et al. 2012):

\[\bar{b}(z) = \frac{1}{\bar{n}_{gal}(z)}\int_{M_{min}}^{M_{max}} <N_{gal}|M>\, b_{halo}(M, z)\, n_{halo}(M, z) \,{\rm d}M\]

where \(\bar{n}_{gal}\) is the mean number density of galaxies, \(<N_{gal}|M>\) is the mean number of galaxies hosted in haloes of mass M, \(b_{halo}\) is the linear halo bias and the halo mass function, \(n_h(M_h, z)=dn/dM_h\), is computed by cosmology::Cosmology::mass_function

Parameters
Mmin\(M_{min}\): the mass scale at which 50% of haloes host a satellite galaxy
sigmalgM\(\sigma_{\log M_h}\): transition width reflecting the scatter in the luminosity-halo mass relation
M0\(M_0\): the cutoff mass
M1\(M_1\): the amplitude of the power law
alpha\(\alpha\): the slope of the power law
inputspointer to the structure that contains the fixed input data used to construct the model
Returns
the mean galaxy bias
Examples
lognormal.cpp.

Definition at line 1026 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.

◆ damped_Pk_terms()

std::vector< std::vector< double > > cbl::modelling::twopt::damped_Pk_terms ( const std::vector< double >  kk,
const double  linear_growth_rate,
const double  SigmaS,
const std::shared_ptr< cbl::glob::FuncGrid PkDM 
)

the power spectrum terms obtained integrating the redshift space 2D power spectrum

the function returns the analytic solutions of the integral of the redshift space 2D power spectrum along \(\mu\):

\(P(k,\mu) = P_\mathrm{DM}(k) (b+f\mu^2)^2 \exp(-k^2\mu^2\sigma^2)\).

Solutions are :

\[ P'(k) = P_\mathrm{DM}(k) \frac{\sqrt{\pi}}{2 k \sigma} \mathrm{erf}(k\sigma) ; \\ P''(k) = \frac{f}{(k\sigma)^3} P_\mathrm{DM}(k) \left[\frac{\sqrt{\pi}}{2}\mathrm{erf}(k\sigma) -k\sigma\exp(-k^2\sigma^2)\right] ; \\ P'''(k) = \frac{f^2}{(k\sigma)^5}P_\mathrm{DM}(k) \left\{ \frac{3\sqrt{\pi}}{8}\mathrm{erf}(k\sigma) \right. \\ \left. - \frac{k\sigma}{4}\left[2(k\sigma)^2+3\right]\exp(-k^2\sigma^2)\right\} . \\ \]

Parameters
kkthe binned wave vector modules
linear_growth_ratethe linear growth rate
SigmaSstreaming scale
PkDMdark matter power spectrum interpolator
Returns
the damped two-point correlation monopole.

Definition at line 560 of file ModelFunction_TwoPointCorrelation.cpp.

◆ damped_Xi()

std::vector< double > cbl::modelling::twopt::damped_Xi ( const std::vector< double >  ss,
const double  bias,
const double  linear_growth_rate,
const double  SigmaS,
const std::vector< double >  kk,
const std::shared_ptr< cbl::glob::FuncGrid PkDM 
)

the damped two-point correlation monopole; from Sereno et al. 2015

The function computes the damped two-point correlation monopole:

\(\xi(s) = b^2 \xi'(s) + b \xi''(s) + \xi'''(s) \, ;\)

where b is the linear bias and the terms \(\xi'(s)\), \(\xi''(s)\), \(\xi'''(s)\) are the Fourier anti-transform of the power spectrum terms obtained integrating the redshift space 2D power spectrum along \(\mu\) (see cbl::modelling::twopt.:damped_Pk_terms).

Parameters
ssvector of scales
biasthe linear bias
linear_growth_ratethe linear growth rate
SigmaSstreaming scale
kkthe binned wave vector modules
PkDMdark matter power spectrum interpolator
Returns
the damped two-point correlation monopole.

Definition at line 583 of file ModelFunction_TwoPointCorrelation.cpp.

◆ Navg()

double cbl::modelling::twopt::Navg ( const double  Mass,
const double  lgMmin,
const double  sigmalgM,
const double  lgM0,
const double  lgM1,
const double  alpha 
)

the average number of galaxies hosted in a dark matter halo of a given mass

the function computes the average number of galaxies hosted in a dark matter halo of mass \(M_h\) as follows:

\[N_{gal}(M_h)\equiv<N_{gal}|M_h> = <N_{cen}|M_h> + <N_{sat}|M_h>\]

where \(<N_{cen}|M_h>\) and \(<N_{sat}|M_h>\) are computed by cbl::modelling::twopt::Ncen and cbl::modelling::twopt::Nsat, respectively

Parameters
Massthe mass of the hosting dark matter halo
lgMmin\(logM_{min}\): the the logarithm of the mass scale at which 50% of haloes host a satellite galaxy
sigmalgM\(\sigma_{\log M_h}\): transition width reflecting the scatter in the luminosity-halo mass relation
lgM0\(logM_0\): the logarithm of the cutoff mass
lgM1\(logM_1\): the logarithm of the amplitude of the power law
alpha\(\alpha\): the the slope of the power law
Returns
\(N_{gal}(M_h)\)

Definition at line 1000 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.

◆ Ncen()

double cbl::modelling::twopt::Ncen ( const double  Mass,
const double  lgMmin,
const double  sigmalgM 
)

the average number of central galaxies hosted in a dark matter halo of a given mass

this function computes the average number of central galaxies hosted in a dark matter halo of mass \(M_h\) as follows (Harikane et al. 2017; see also e.g. Zheng et al. 2005 for a similar formalism):

\[N_{cen}(M_h)\equiv<N_{cen}|M_h>=\frac{1}{2}\left[1+{\rm erf}\left(\frac{\log M_h-\log M_{min}}{\sqrt{2}\sigma_{\log M_h}}\right)\right]\]

Parameters
Massthe mass of the hosting dark matter halo
lgMmin\(logM_{min}\): the logarithm of the mass scale at which 50% of haloes host a central galaxy
sigmalgM\(\sigma_{\log M_h}\): transition width reflecting the scatter in the luminosity-halo mass relation
Returns
\(N_{cen}(M_h)\)

Definition at line 980 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.

◆ NcNs()

double cbl::modelling::twopt::NcNs ( const double  Mass,
const double  lgMmin,
const double  sigmalgM,
const double  lgM0,
const double  lgM1,
const double  alpha 
)

the mean number of central-satellite galaxy pairs

this function computes the mean number of central-satellite galaxy pairs, \(<N_{cen}N_{sat}>(M_h)\), as follows:

\[<N_{cen}N_{sat}>(M_h)=N_{cen}(M_h)N_{sat}(M_h)\]

where the average number of central and satellite galaxies, \(N_{cen}\) and \(N_{sat}\) are computed by cbl::modelling::twopt::Ncen and cbl::modelling::twopt::Nsat, respectively

Parameters
Massthe mass of the hosting dark matter halo
lgMmin\(logM_{min}\): the logarithm of the mass scale at which 50% of haloes host a satellite galaxy
sigmalgM\(\sigma_{\log M_h}\): transition width reflecting the scatter in the luminosity-halo mass relation
lgM0\(logM_0\): the logarithm of the cutoff mass
lgM1\(logM_1\): the logarithm of the amplitude of the power law
alpha\(\alpha\): the slope of the power law
Returns
\(<N_{cen}N_{sat}>(M_h)\)
Warning
The current implementation is valid only for Poisson distribution of the satellite galaxy's distribution (see e.g. Harikane et al 2016)

Definition at line 1053 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.

◆ ng()

double cbl::modelling::twopt::ng ( const double  lgMmin,
const double  sigmalgM,
const double  lgM0,
const double  lgM1,
const double  alpha,
const std::shared_ptr< void >  inputs 
)

the galaxy number density

this function computes the galaxy number density as follows:

\[n_{gal}(z) = \int_{logM_{min}}^{logM_{max}}n_{h, interp}(M_h, z)N_{gal} (M_h)M_hln(10)\,{\rm d}log(M_h)\]

where \(n_{h, interp}(M_h, z)\) is an interpolation of the halo mass function cosmology::Cosmology::mass_function, and the average number of galaxies hosted in a dark matter halo of a given mass, \(N_{gal}(M_h)\), is computed by cbl::modelling::twopt::Navg

The equation above was obtained from the original expression for \(n_{gal}(z)\) using a change of variable from \(dM_h\) to \(dlogM_h\). The original expression for \(n_{gal}(z)\) is the following:

\[n_{gal}(z) = \int_0^{M_{max}}n_h(M_h, z)N_{gal}(M_h)\,{\rm d}M_h\]

Parameters
lgMmin\(logM_{min}\): the logarithm of the mass scale at which 50% of haloes host a satellite galaxy
sigmalgM\(\sigma_{\log M_h}\): transition width reflecting the scatter in the luminosity-halo mass relation
lgM0\(logM_0\): the logarithm of the cutoff mass
lgM1\(logM_1\): the logarithm of the amplitude of the power law
alpha\(\alpha\): the slope of the power law
inputspointer to the structure that contains the fixed input data used to construct the model
Returns
the galaxy number density
Warning
in the current implementation, the integral is actually computed in the range \(10^{10} -10^{16}\) solar masses, using GSL_integrate_qag

Definition at line 1009 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.

◆ Nsat()

double cbl::modelling::twopt::Nsat ( const double  Mass,
const double  lgMmin,
const double  sigmalgM,
const double  lgM0,
const double  lgM1,
const double  alpha 
)

the average number of satellite galaxies hosted in a dark matter halo of a given mass

this function computes the average number of satellite galaxies hosted in a dark matter halo of mass \(M_h\) as follows (Harikane et al. 2017; see also e.g. Zheng et al. 2005 for a similar formalism):

\[N_{sat}(M_h)\equiv<N_{sat}|M_h> = N_{cen}(M_h)\left(\frac{M_h-M_0}{M_1}\right)^\alpha\]

where \(N_{cen}\) is computed by cbl::modelling::twopt::Ncen

Parameters
Massthe mass of the hosting dark matter halo
lgMmin\(logM_{min}\): the logarithm of the mass scale at which 50% of haloes host a satellite galaxy
sigmalgM\(\sigma_{\log M_h}\): transition width reflecting the scatter in the luminosity-halo mass relation
lgM0\(logM_0\): the the logarithm of the cutoff mass
lgM1\(logM_1\): the the logarithm of the amplitude of the power law
alpha\(\alpha\): the slope of the power law
Returns
\(N_{sat}(M_h)\)

Definition at line 990 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.

◆ NsNs1()

double cbl::modelling::twopt::NsNs1 ( const double  Mass,
const double  lgMmin,
const double  sigmalgM,
const double  lgM0,
const double  lgM1,
const double  alpha 
)

the mean number of satellite-satellite galaxy pairs

this function computes the mean number of satellite-satellite galaxy pairs, \(<N_{sat}(N_{sat}-1)>(M_h)\), as follows:

\[<N_{sat}(N_{sat}-1)>(M_h)=N_{sat}^2(M_h)\]

where the average number of satellite galaxies, \(N_{sat}\) are computed by cbl::modelling::twopt::Nsat

Parameters
Massthe mass of the hosting dark matter halo
lgMmin\(logM_{min}\): the logarithm of the mass scale at which 50% of haloes host a satellite galaxy
sigmalgM\(\sigma_{\log M_h}\): transition width reflecting the scatter in the luminosity-halo mass relation
lgM0\(logM_0\): the logarithm of the cutoff mass
lgM1\(logM_1\): the logarithm of the amplitude of the power law
alpha\(\alpha\): the slope of the power law
Returns
\(<N_{sat}(N_{sat}-1)>(M_h)\)
Warning
The current implementation is valid only for Poisson distribution of the satellite galaxy's distribution (see e.g. Harikane et al 2016)

Definition at line 1062 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.

◆ Pk_1halo()

double cbl::modelling::twopt::Pk_1halo ( const double  kk,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

model for the 1-halo term of the power spectrum

this function computes the 1-halo term of power spectrum as follows:

\[P_{1halo}(k, z) = P_{cs}(k, z)+P_{ss}(k, z)\]

where the central-satellite term, \(P_{cs}(k, z)\), and the satellite-satellite term, \(P_{ss}(k, z)\) are computed by cbl::modelling::twopt::Pk_cs and cbl::modelling::twopt::Pk_ss, respectively

Parameters
kkthe wave vector module at which the model is computed
inputspointer to the structure that contains the fixed input data used to construct the model
parametervector containing the model parameters
Returns
the 1-halo term of the power spectrum

Definition at line 1125 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.

◆ Pk_2halo()

double cbl::modelling::twopt::Pk_2halo ( const double  kk,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

model for the 2-halo term of the power spectrum

this function computes the 2-halo term of the power spectrum as follows:

\[P_{2halo}(k, z) = P_{m, interp}(k, z) \left[\frac{1}{n_{gal}(z)} \int_{log(M_{min})}^{log(M_{max})} N_{gal}(M_h)\,n_{h, interp}(M_h, z) \,b_{h, interp}(M_h, z)\,\tilde{u}_h(k, M_h, z)\,M_hln(10){\rm d}log(M_h)\right]^2\]

where \(P_{m, interp}(k, z)\) is an interpolation of the matter power spectrum cbl::cosmology::Cosmology::Pk, the galaxy number density \(n_{gal}(z)\) is computed by cbl::modelling::twopt::ng, the average number of galaxies hosted in a dark matter halo of a given mass, \(N_{gal}(M_h)\), is computed by cbl::modelling::twopt::Navg, \(n_{h, interp}(M_h, z)\) is an interpolation of the halo mass function cosmology::Cosmology::mass_function, \(b_{h, interp}(M_h, z)\) is an interpolation of the halo bias cosmology::Cosmology::bias_halo, and the Fourier transform of the density profile, \(\tilde{u}_h(k, M_h, z)\), is computed by cbl::cosmology::Cosmology::density_profile_FourierSpace

The equation above was obtained from the original expression for \(P_{2halo}(k, z)\) using a change of variable from \(dM_h\) to \(dlogM_h\). The original expression for \(P_{2halo}(k, z)\) (e.g. Harikane et al. 2016) is the following:

\[P_{2halo}(k, z) = P_m(k, z) \left[\frac{1}{n_{gal}(z)} \int_{M_{min}}^{M_{max}} N_{gal}(M_h)\,n_h(M_h, z)\,b_h(M, z)\,\tilde{u}_h(k, M_h, z)\,{\rm d} M_h\right]^2\]

Parameters
kkthe wave vector module at which the model is computed
inputspointer to the structure that contains the fixed input data used to construct the model
parametervector containing the model parameters
Returns
the 2-halo term of the power spectrum

Definition at line 1134 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.

◆ Pk_cs()

double cbl::modelling::twopt::Pk_cs ( const double  kk,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

model for the central-satellite part of the 1-halo term of the power spectrum

this function computes the central-satellite part of the 1-halo term of power spectrum as follows:

\[P_{cs}(k, z) = \frac{2}{n_{gal}^2(z)} \int_{log(M_{min})}^{log(M_{max})} n_{h, interp}(M_h, z)\,<N_{cen}N_{sat}>(M_h)\, \tilde{u}_h(k, M_h, z)\,M_h\,ln(10)\,{\rm d}log(M_h)\]

where the galaxy number density \(n_{gal}(z)\) is computed by cbl::modelling::twopt::ng, \(n_{h, interp}(M_h, z)\) is an interpolation of the halo mass function cosmology::Cosmology::mass_function, \(<N_{cen}N_{sat}>(M_h)\) is computed by cbl::modelling::twopt::NcNs, and the Fourier transform of the halo density profile \(\tilde{u}_h(k, M_h, z)\) is computed by cbl::cosmology::Cosmology::density_profile_FourierSpace

The equation above was obtained from the original expression for \(P_{cs}(k, z)\) using a change of variable from \(dM_h\) to \(dlogM_h\). The original expression for \(P_{cs}(k, z)\) (e.g. Harikane et al. 2016) is the following:

\[P_{cs}(k, z) = \frac{2}{n_{gal}^2(z)} \int_{M_{min}}^{M_{max}} <N_{cen}N_{sat}>(M_h)\,n_h(M_h, z)\,\tilde{u}_h(k, M_h, z)\,{\rm d} M_h\]

Parameters
kkthe wave vector module at which the model is computed
inputspointer to the structure that contains the fixed input data used to construct the model
parametervector containing the model parameters
Returns
the central-satellite part of the 1-halo term of the power spectrum

Definition at line 1071 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.

◆ Pk_HOD()

double cbl::modelling::twopt::Pk_HOD ( const double  kk,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

HOD model of the power spectrum.

this function computes the power spectrum as follows:

\[P(k, z) = P_{1halo}(k, z)+P_{2halo}(k, z)\]

where the 1-halo and 2-halo terms of the power spectrum, \(P_{1halo}(k, z)\) and \(P_{2halo}(k, z)\) are computed by cbl::modelling::twopt::Pk_1halo and cbl::modelling::twopt::Pk_2halo, respectively

Parameters
kkthe wave vector module at which the model is computed
inputspointer to the structure that contains the fixed input data used to construct the model
parametervector containing the model parameters
Returns
the HOD model of the power spectrum

Definition at line 1160 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.

◆ Pk_l() [1/2]

double cbl::modelling::twopt::Pk_l ( const double  kk,
const int  l,
const std::string  model,
const std::vector< double >  parameter,
const std::vector< std::shared_ptr< glob::FuncGrid >>  pk_interp,
const double  prec = 1.e-5,
const double  alpha_perp = 1.,
const double  alpha_par = 1. 
)

the multipole of order l of the power spectrum

The function computes the legendre polynomial expansion of the \(P(k, \mu)\):

\[ P_l(k) = \frac{2l+1}{2} \int_{-1}^{1} \mathrm{d}\mu P(k, \mu) L_l(\mu) \]

where \(l\) is the order of the expansion and \(L_l(\mu)\) is the Legendere polynomial of order \(l\); \(P(k, \mu)\) is computed by cbl::modelling::twopt::Pkmu

Parameters
kkthe wave vector module
lthe order of the expansion
modelthe \(P(k,\mu)\) model
parametervector containing parameter values
pk_interpvector containing power spectrum interpolating functions
precthe integral precision
alpha_perpthe shift transverse to the l.o.s.
alpha_parthe shift parallel to the l.o.s.
Returns
the multipole expansion of \(P(k, \mu)\) at given \(k\)

Definition at line 403 of file ModelFunction_TwoPointCorrelation.cpp.

◆ Pk_l() [2/2]

std::vector< double > cbl::modelling::twopt::Pk_l ( const std::vector< double >  kk,
const int  l,
const std::string  model,
const std::vector< double >  parameter,
const std::vector< std::shared_ptr< glob::FuncGrid >>  pk_interp,
const double  prec = 1.e-5,
const double  alpha_perp = 1.,
const double  alpha_par = 1. 
)

the multipole of order l of the power spectrum

The function computes the legendre polynomial expansion of the \(P(k, \mu)\):

\[ P_l(k) = \frac{2l+1}{2} \int_{-1}^{1} \mathrm{d}\mu P(k, \mu) L_l(\mu) \]

where \(l\) is the order of the expansion and \(L_l(\mu)\) is the Legendere polynomial of order \(l\); \(P(k, \mu)\) is computed by cbl::modelling::twopt::Pkmu

Parameters
kkthe wave vector module vector
lthe order of the expansion
modelthe \(P(k,\mu)\) model
parametervector containing parameter values
pk_interpvector containing power spectrum interpolating functions
precthe integral precision
alpha_perpthe shift transverse to the l.o.s.
alpha_parthe shift parallel to the l.o.s.
Returns
the multipole expansion of \(P(k, \mu)\) at given \(k\)

Definition at line 416 of file ModelFunction_TwoPointCorrelation.cpp.

◆ Pk_ss()

double cbl::modelling::twopt::Pk_ss ( const double  kk,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

model for the satellite-satellite part of the 1-halo term of the power spectrum

this function computes the satellite-satellite part of the 1-halo term of power spectrum as follows

\[P_{ss}(k, z) = \frac{1}{n_{gal}^2(z)} \int_{log(M_{min})}^{log(M_{max})} n_{h, interp}(M_h, z)\,<N_{sat}(N_{sat}-1)>(M_h) \,{\tilde{u}_h}^2(k, M_h, z)\,M_hln(10){\rm d}log(M_h)\]

where the galaxy number density \(n_{gal}(z)\) is computed by cbl::modelling::twopt::ng, \(n_{h, interp}(M_h, z)\) is an interpolation of the halo mass function cosmology::Cosmology::mass_function, \(<N_{sat}(N_{sat}-1)>(M_h)\) is computed by cbl::modelling::twopt::NsNs1, and the Fourier transform of the halo density profile \(\tilde{u}_h(k, M_h, z)\) is computed by cbl::cosmology::Cosmology::density_profile_FourierSpace

The equation above was obtained from the original expression for \(P_{ss}(k, z)\) using a change of variable from \(dM_h\) to \(dlogM_h\). The original expression for \(P_{ss}(k, z)\) (e.g. Harikane et al. 2016) is the following:

\[P_{ss}(k, z) = \frac{1}{n_{gal}^2(z)} \int_{M_{min}}^{M_{max}} <N_{sat}(N_{sat}-1)>(M_h)\,n_h(M_h, z)\,\tilde{u}_h^2(k, M_h, z)\,{\rm d} M_h\]

Parameters
kkthe wave vector module at which the model is computed
inputspointer to the structure that contains the fixed input data used to construct the model
parametervector containing the model parameters
Returns
the satellite-satellite part of the 1-halo term of the power spectrum

Definition at line 1098 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.

◆ Pkmu()

double cbl::modelling::twopt::Pkmu ( const double  kk,
const double  mu,
const std::string  model,
const std::vector< double >  parameter,
const std::vector< std::shared_ptr< glob::FuncGrid >>  pk_interp,
const double  alpha_perp = 1.,
const double  alpha_par = 1. 
)

the power spectrum as a function of k and \(\mu\)

this function computes the redshift-space power spectrum:

\[ \frac{P(k', \mu')}{\alpha_\perp^2\alpha_\parallel} \]

where

\[ k' = \frac{k}{\alpha_\perp} \sqrt{1+\mu^2 \left[ \left( \frac{\alpha_\parallel}{\alpha_\perp}\right)^{-2}-1 \right]} \, , \]

\[ \mu' = \mu\frac{\alpha_\perp}{\alpha_\parallel} \frac{1}{\sqrt{1+\mu^2\left[\left( \frac{\alpha_\parallel}{\alpha_\perp} \right)^{-2}-1\right]}} \, , \]

with one of the following models:

The Alcock-Paczynski term has been introduced following Ballinger et al. 1998, (https://arxiv.org/pdf/astro-ph/9605017.pdf), Beutler et al. 2016, sec 5.2 (https://arxiv.org/pdf/1607.03150.pdf)

The above models may differ for both the redshit-space distortions and the non-linear power spectrum implementation, and may have different numbers of free parameters.

Parameters
kkthe true wave vector module, \(k'\)
muthe true line-of-sight cosine. \(\mu'\)
modelthe anisotropic power spectrum model; the possible options are: dispersion_Gauss, dispersion_Lorentz, dispersion_dewiggled, dispersion_modecoupling, Scoccimarro_Gauss, Scoccimarro_Lorentz Scoccimarro_Pezzotta_Gauss, Scoccimarro_Pezzotta_Lorentz, Scoccimarro_Bel_Gauss, Scoccimarro_Bel_Lorentz, TNS_Gauss, TNS_Lorentz, eTNS_Gauss, eTNS_Lorentz
parametervector containing parameter values
pk_interpvector containing power spectrum interpolating functions
alpha_perpthe shift transverse to the l.o.s.
alpha_parthe shift parallel to the l.o.s.
Returns
\( \frac{P(k', \mu')}{\alpha_\perp^2\alpha_\parallel} \)

Definition at line 302 of file ModelFunction_TwoPointCorrelation.cpp.

◆ Pkmu_DeWiggled()

double cbl::modelling::twopt::Pkmu_DeWiggled ( const double  kk,
const double  mu,
const double  sigmaNL_perp,
const double  sigmaNL_par,
const double  linear_growth_rate,
const double  bias,
const double  SigmaS,
const std::shared_ptr< cbl::glob::FuncGrid Pk,
const std::shared_ptr< cbl::glob::FuncGrid Pk_NW 
)

the redshift-space galaxy power spectrum, as a function of \(k\) and \(\mu\), predicted by the de-wiggled model

this function computes the redshift-space BAO-damped power spectrum model \(P(k, \mu)\) (see e.g. Beutler et al. 2016 https://arxiv.org/pdf/1607.03149.pdf); Vargas-Magana et al. 2018 https://arxiv.org/pdf/1610.03506.pdf):

\[ P(k, \mu) = \left(1+\beta\mu^2 \right)^2 \left( \frac{1}{1+\left(kf\Sigma_S\mu\right)^2} \right)^2 P_{NL}(k) \]

where

\[ P_{NL}(k) = b^2 \left\{ \left[ P_{lin}(k) - P_{nw}(k) \right] e^{-k^2\Sigma_{NL}^2}+P_{nw}(k) \right\} , \]

\(\mu = k_{\parallel} / k\), \(P_{lin}\), \(P_{nw}\) are the linear and the de-wiggled power spectra, respectively (Eisenstein et al. 1998), and \(\beta = f/b\) with \(f\) the linear growth rate and \(b\) the bias, and \(\Sigma_S\) is the streaming scale that parameterises the Fingers of God effect at small scales. The BAO damping is parametrised via \(\Sigma^2_{NL} = 0.5 (1-\mu'^2)\Sigma^2_{\perp}+\mu'^2\Sigma^2_{\parallel} \), where \(\Sigma_{\perp}\) and \(\Sigma_{\parallel}\) are the damping term in the transverse and parallel directions to the line of sight, respectively.

Parameters
kkthe wave vector module
muthe line of sight cosine
sigmaNL_perpthe damping in the direction transverse to the l.o.s.
sigmaNL_parthe damping in the direction parallel to the l.o.s.
linear_growth_ratethe linear growth rate
biasthe linear bias
SigmaSstreaming scale
Pklinear power spectrum interpolator
Pk_NWde-wiggled power spectrum interpolator
Returns
\(P(k, \mu)\)

Definition at line 57 of file ModelFunction_TwoPointCorrelation.cpp.

◆ Pkmu_dispersion()

double cbl::modelling::twopt::Pkmu_dispersion ( const double  kk,
const double  mu,
const std::string  DFoG,
const double  linear_growth_rate,
const double  bias,
const double  sigmav,
const std::shared_ptr< cbl::glob::FuncGrid Pklin 
)

the redshift-space galaxy power spectrum, as a function of \(k\) and \(\mu\), predicted by the dispersion model

this function computes the redshift-space power spectrum \(P(k, \mu)\) for the so-called dispersion model (see e.g. Pezzotta et al. 2017 https://arxiv.org/abs/1612.05645):

\[ P(k, \mu) = D_{FoG}(k, \mu, f, \sigma_v)\left(1+\frac{f}{b}\mu^2\right)^2b^2P^{lin}(k) \]

where \(f\) is the linear growth rate, \(b\) is the linear galaxy bias, \(\mu\) is the cosine of the angle between the line-of-sight and the comoving separation, \(P^{lin}(k')\) is the real-space matter power spectrum, which is computed by cbl::cosmology::Cosmology::Pk_matter, and \(D_{FoG}\) is a damping factor used to model the random peculiar motions at small scales, which can be either Gaussian:

\[ D_{FoG}(k, \mu, f, \sigma_v) = e^{-k^2\mu^2f^2\sigma_v^2} \]

or Lorentzian:

\[ D_{FoG}(k, \mu, f, \sigma_v) = \frac{1}{1+k^2\mu^2f^2\sigma_v^2} \]

Author
J.E. Garcia-Farieta
joega.nosp@m.rcia.nosp@m.fa@un.nosp@m.al.e.nosp@m.du.co
Parameters
kkthe wave vector module
muthe line of sight cosine
DFoGthe damping factor (Gaussian or Lorentzian)
linear_growth_ratethe linear growth rate
biasthe linear bias
sigmavthe streaming scale
Pklinlinear power spectrum interpolator
Returns
\(P(k, \mu)\)

Definition at line 94 of file ModelFunction_TwoPointCorrelation.cpp.

◆ Pkmu_eTNS()

double cbl::modelling::twopt::Pkmu_eTNS ( const double  kk,
const double  mu,
const std::string  DFoG,
const double  linear_growth_rate,
const double  bias,
const double  bias2,
const double  sigmav,
const double  Ncorr,
const std::shared_ptr< cbl::glob::FuncGrid Pk_DeltaDelta,
const std::shared_ptr< cbl::glob::FuncGrid Pk_DeltaTheta,
const std::shared_ptr< cbl::glob::FuncGrid Pk_ThetaTheta,
const std::shared_ptr< cbl::glob::FuncGrid Pk_A11,
const std::shared_ptr< cbl::glob::FuncGrid Pk_A12,
const std::shared_ptr< cbl::glob::FuncGrid Pk_A22,
const std::shared_ptr< cbl::glob::FuncGrid Pk_A23,
const std::shared_ptr< cbl::glob::FuncGrid Pk_A33,
const std::shared_ptr< cbl::glob::FuncGrid Pk_B12,
const std::shared_ptr< cbl::glob::FuncGrid Pk_B13,
const std::shared_ptr< cbl::glob::FuncGrid Pk_B14,
const std::shared_ptr< cbl::glob::FuncGrid Pk_B22,
const std::shared_ptr< cbl::glob::FuncGrid Pk_B23,
const std::shared_ptr< cbl::glob::FuncGrid Pk_B24,
const std::shared_ptr< cbl::glob::FuncGrid Pk_B33,
const std::shared_ptr< cbl::glob::FuncGrid Pk_B34,
const std::shared_ptr< cbl::glob::FuncGrid Pk_B44,
const std::shared_ptr< cbl::glob::FuncGrid Pk_b2d,
const std::shared_ptr< cbl::glob::FuncGrid Pk_b2v,
const std::shared_ptr< cbl::glob::FuncGrid Pk_b22,
const std::shared_ptr< cbl::glob::FuncGrid Pk_bs2d,
const std::shared_ptr< cbl::glob::FuncGrid Pk_bs2v,
const std::shared_ptr< cbl::glob::FuncGrid Pk_b2s2,
const std::shared_ptr< cbl::glob::FuncGrid Pk_bs22,
const std::shared_ptr< cbl::glob::FuncGrid sigma32Pklin 
)

the redshift-space galaxy power spectrum, as a function of \(k\) and \(\mu\), predicted by the extended TNS (Taruya, Nishimichi and Saito) model

this function computes the so-called extended TNS redshift-space power spectrum \(P(k, \mu)\) (see e.g. Beutler et al. 2014 https://arxiv.org/abs/1312.4611; Gil-Marìn et al. 2014 https://arxiv.org/abs/1407.1836; de la Torre et al. https://arxiv.org/abs/1612.05647) which is computed in 1-loop aproximation using (standard) Perturbation Theory (Taruya et al. 2010 https://arxiv.org/abs/1006.0699; Taruya et al. 2013 https://arxiv.org/abs/1301.3624; McDonald and Roy 2019 https://arxiv.org/abs/0902.0991):

\[ P(k, \mu) = D_{FoG}(k, \mu, f, \sigma_v)\left[P_{\mathrm{g}, \delta \delta}(k) +2 f \mu^{2} P_{\mathrm{g}, \delta \theta}(k)+f^{2} \mu^{4} P_{\theta \theta}(k) + b_{1}^{3} A(k, \mu, f/b_{1})+b_{1}^{4} B(k, \mu, f/b_{1})\right] \]

where

\[ P_{\mathrm{g}, \delta \delta}(k) = b_{1}^{2} P_{\delta \delta}(k)+2 b_{2} b_{1} P_{b 2, \delta}(k)+2 b_{s^2} b_{1} P_{b s 2, \delta}(k) \\ +2 b_{3 \mathrm{nl}} b_{1} \sigma_{3}^{2}(k) P_{\mathrm{m}}^{\mathrm{lin}}(k)+b_{2}^{2} P_{b 22}(k) \\ +2 b_{2} b_{s^2} P_{b 2 s 2}(k)+b_{s^2}^{2} P_{b s 22}(k)+N \]

\[ P_{\mathrm{g}, \delta \theta}(k) = b_{1} P_{\delta \theta}(k)+b_{2} P_{b 2, \theta}(k)+b_{s^2} P_{b s 2, \theta}(k) \\ +b_{3 \mathrm{nl}} \sigma_{3}^{2}(k) P_{\mathrm{m}}^{\mathrm{lin}}(k) \]

and

\[ A(k, \mu ; f) = j_{1} \int d^{3} r\, e^{i \boldsymbol{k} \cdot \boldsymbol{r}}\left\langle A_{1} A_{2} A_{3}\right\rangle_{c} = k \mu f \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{p_{z}}{p^{2}}\left\{B_{\sigma}(\boldsymbol{p}, \boldsymbol{k}-\boldsymbol{p},-\boldsymbol{k}) - B_{\sigma}(\boldsymbol{p}, \boldsymbol{k},-\boldsymbol{k}-\boldsymbol{p})\right\} \, , \]

\[ B(k, \mu ; f) = j_{1}^{2} \int d^{3} r\, e^{i \boldsymbol{k} \cdot \boldsymbol{r}}\left\langle A_{1} A_{2}\right\rangle_{c}\left\langle A_{1} A_{3}\right\rangle_{c} = (k \mu f)^{2} \int \frac{d^{3} p}{(2 \pi)^{3}} F_{\sigma}(\boldsymbol{p}) F_{\sigma}(\boldsymbol{k}-\boldsymbol{p}) \, , \]

\[ b_{s^2} = -\frac{4}{7}(b_1-1)\, , \]

\[ b_{3 \mathrm{nl}} = \frac{32}{315}(b_1-1) \]

where \(f\) is the linear growth rate, \(b\) is the linear galaxy bias, \(\mu\) is the cosine of the angle between the line-of-sight and the comoving separation, \(P_{\delta\delta}(k)\), \(P_{\delta\theta}(k)\) and \(P_{\theta\theta}(k)\) are the real-space matter power spectrum and the real-space density-velocity divergence cross-spectrum and the real-space velocity divergence auto-spectrum, computed at 1-loop using (Standard) Perturbation Theory as implemented in the CPT Library [http://www2.yukawa.kyoto-u.ac.jp/~atsushi.taruya/cpt_pack.html] by cbl::cosmology::Cosmology::Pk_TNS_dd_dt_tt, all the terms in the power spectrum correction correction terms are computed by cbl::cosmology::Cosmology::Pk_TNS_AB_terms_1loop and cbl::cosmology::Cosmology::Pk_eTNS_terms_1loop, \(D_{FoG}\) is a damping factor used to model the random peculiar motions at small scales, which can be either Gaussian:

\[ D_{FoG}(k, \mu, f, \sigma_v) = e^{-k^2\mu^2f^2\sigma_v^2} \]

or Lorentzian:

\[ D_{FoG}(k, \mu, f, \sigma_v) = \frac{1}{1+k^2\mu^2f^2\sigma_v^2} \]

Author
J.E. Garcia-Farieta
joega.nosp@m.rcia.nosp@m.fa@un.nosp@m.al.e.nosp@m.du.co
Parameters
kkthe wave vector module
muthe line of sight cosine
DFoGthe damping factor (Gaussian or Lorentzian)
linear_growth_ratethe linear growth rate
biasthe linear bias
bias2the second order local bias
sigmavthe streaming scale
Ncorrconstant stochasticity term
Pk_DeltaDeltapower spectrum interpolator
Pk_DeltaThetapower spectrum interpolator
Pk_ThetaThetapower spectrum interpolator
Pk_A11power spectrum interpolator
Pk_A12power spectrum interpolator
Pk_A22power spectrum interpolator
Pk_A23power spectrum interpolator
Pk_A33power spectrum interpolator
Pk_B12power spectrum interpolator
Pk_B13power spectrum interpolator
Pk_B14power spectrum interpolator
Pk_B22power spectrum interpolator
Pk_B23power spectrum interpolator
Pk_B24power spectrum interpolator
Pk_B33power spectrum interpolator
Pk_B34power spectrum interpolator
Pk_B44power spectrum interpolator
Pk_b2dpower spectrum interpolator
Pk_b2vpower spectrum interpolator
Pk_b22power spectrum interpolator
Pk_bs2dpower spectrum interpolator
Pk_bs2vpower spectrum interpolator
Pk_b2s2power spectrum interpolator
Pk_bs22power spectrum interpolator
sigma32Pklinpower spectrum interpolator
Returns
\(P(k, \mu)\)

Definition at line 236 of file ModelFunction_TwoPointCorrelation.cpp.

◆ Pkmu_ModeCoupling()

double cbl::modelling::twopt::Pkmu_ModeCoupling ( const double  kk,
const double  mu,
const double  linear_growth_rate,
const double  bias,
const double  sigmav,
const double  AMC,
const std::shared_ptr< cbl::glob::FuncGrid PkLin,
const std::shared_ptr< cbl::glob::FuncGrid PkMC 
)

the redshift-space galaxy power spectrum, as a function of \(k\) and \(\mu\), predicted by the mode-coupling model

this function computes the redshift-space mode-coupling power spectrum model \(P(k, \mu)\) (see e.g. Sanchez et al. 2013 https://arxiv.org/pdf/1312.4854.pdf; Beutler et al. 2016 https://arxiv.org/pdf/1607.03149.pdf):

\[ P(k, \mu) = \left(1+\beta\mu^2 \right)^2 \left( \frac{1}{1+\left(kf\sigma_v\mu\right)^2} \right)^2 P_{NL}(k) \]

where

\[ P_{NL}(k) = b^2 \left\{ P_{L}(k)e^{-(k\mu\sigma_v)^2} +A_{MC}P_{MC}(k) \right\} , \]

\(\mu = k_{\parallel} / k\), \(P_{lin}\), \(P_{MC}\) are the linear and the linear and 1loop correction power spectra, and \(\beta = f/b\) with \(f\) the linear growth rate and \(b\) the bias, \(\sigma_v\) is the streaming scale that parameterises the Fingers of God effect at small scales and A_{MC} is the mode coupling bias.

Parameters
kkthe wave vector module
muthe line of sight cosine
linear_growth_ratethe linear growth rate
biasthe linear bias
sigmavthe streaming scale
AMCthe mode coupling bias
PkLinlinear power spectrum interpolator
PkMCthe 1loop power spectrum correction
Returns
\(P(k, \mu)\)

Definition at line 76 of file ModelFunction_TwoPointCorrelation.cpp.

◆ Pkmu_Scoccimarro()

double cbl::modelling::twopt::Pkmu_Scoccimarro ( const double  kk,
const double  mu,
const std::string  DFoG,
const double  linear_growth_rate,
const double  bias,
const double  sigmav,
const std::shared_ptr< cbl::glob::FuncGrid Pk_DeltaDelta,
const std::shared_ptr< cbl::glob::FuncGrid Pk_DeltaTheta,
const std::shared_ptr< cbl::glob::FuncGrid Pk_ThetaTheta 
)

the redshift-space galaxy power spectrum, as a function of \(k\) and \(\mu\), predicted by the Scoccimarro model

this function computes the redshift-space power spectrum \(P(k, \mu)\) for the Scoccimarro model, in 1-loop approximation using (standard) Perturbation Theory (see e.g. Scoccimarro 2004 https://arxiv.org/abs/astro-ph/0407214):

\[ P(k, \mu) = D_{FoG}(k, \mu, f \sigma_v) \left(b^2P_{\delta\delta}(k) + 2fb\mu^2P_{\delta\theta}(k) + f^2\mu^4P_{\theta\theta}(k)\right) \]

where \(f\) is the linear growth rate, \(b\) is the linear galaxy bias, \(\mu\) is the cosine of the angle between the line-of-sight and the comoving separation, \(P_{\delta\delta}(k)\), \(P_{\delta\theta}(k)\) and \(P_{\theta\theta}(k)\) are the real-space matter power spectrum and the real-space density-velocity divergence cross-spectrum and the real-space velocity divergence auto-spectrum, computed at 1-loop using (Standard) Perturbation Theory as implemented in the CPT Library [http://www2.yukawa.kyoto-u.ac.jp/~atsushi.taruya/cpt_pack.html] by cbl::cosmology::Cosmology::Pk_TNS_dd_dt_tt, \(D_{FoG}\) is a damping factor used to model the random peculiar motions at small scales, which can be either Gaussian:

\[ D_{FoG}(k, \mu, f, \sigma_v) = e^{-k^2\mu^2f^2\sigma_v^2} \]

or Lorentzian:

\[ D_{FoG}(k, \mu, f, \sigma_v) = \frac{1}{1+k^2\mu^2f^2\sigma_v^2} \]

Author
J.E. Garcia-Farieta
joega.nosp@m.rcia.nosp@m.fa@un.nosp@m.al.e.nosp@m.du.co
Parameters
kkthe wave vector module
muthe line of sight cosine
DFoGthe damping factor (Gaussian or Lorentzian)
linear_growth_ratethe linear growth rate
biasthe linear bias
sigmavthe streaming scale
Pk_DeltaDeltapower spectrum interpolator
Pk_DeltaThetapower spectrum interpolator
Pk_ThetaThetapower spectrum interpolator
Returns
\(P(k, \mu)\)

Definition at line 113 of file ModelFunction_TwoPointCorrelation.cpp.

◆ Pkmu_Scoccimarro_fitBel()

double cbl::modelling::twopt::Pkmu_Scoccimarro_fitBel ( const double  kk,
const double  mu,
const std::string  DFoG,
const double  linear_growth_rate,
const double  bias,
const double  sigmav,
const double  kd,
const double  bb,
const double  a1,
const double  a2,
const double  a3,
const std::shared_ptr< cbl::glob::FuncGrid Pklin,
const std::shared_ptr< cbl::glob::FuncGrid Pknonlin 
)

the redshift-space galaxy power spectrum, as a function of \(k\) and \(\mu\), predicted by the Scoccimarro model

this function computes the redshift-space power spectrum \(P(k, \mu)\) for the Scoccimarro model, using fitting functions for \(P_{\delta\theta}(k)\) and \(P_{\theta\theta}(k)\) folowing Bel et al. 2019 https://arxiv.org/abs/1809.09338 :

\[ P(k, \mu) = D_{FoG}(k, \mu, f \sigma_v) \left(b^2P_{\delta\delta}(k) + 2fb\mu^2P_{\delta\theta}(k) + f^2\mu^4P_{\theta\theta}(k)\right) \]

where \(f\) is the linear growth rate, \(b\) is the linear galaxy bias, \(\mu\) is the cosine of the angle between the line-of-sight and the comoving separation, \(D_{FoG}\) is a damping factor used to model the random peculiar motions at small scales, which can be either Gaussian:

\[ D_{FoG}(k, \mu, f, \sigma_v) = e^{-k^2\mu^2f^2\sigma_v^2} \]

or Lorentzian:

\[ D_{FoG}(k, \mu, f, \sigma_v) = \frac{1}{1+k^2\mu^2f^2\sigma_v^2} \]

and \(P_{\delta\delta}(k)\), \(P_{\delta\theta}(k)\) and \(P_{\theta\theta}(k)\) are the real-space matter power spectrum, the real-space density-velocity divergence cross-spectrum and the real-space velocity divergence auto-spectrum. \(P_{\delta\theta}(k)\) and \(P_{\theta\theta}(k)\) are approximated as follows:

\[ P_{\delta\theta}(k) = \left(P_{\delta\delta}(k)P^{lin}(k)\right)^{1/2}e^{-k/k_\delta-a_0k^6} \, , \]

\[ P_{\theta\theta}(k) = P^{lin}(k)e^{-k(a_1+a_2k+a_3k^2)} \]

where both the linear power spectrum \(P^{lin}(k)\), and the non-linear power spectrum \(P_{\delta\delta}(k)\) are computed by cbl::cosmology::Cosmology::Pk_matter, and \(k_\delta\), \(a_0\), \(a_1\), \(a_2\), \(a_3\) are free parameters.

Author
J.E. Garcia-Farieta
joega.nosp@m.rcia.nosp@m.fa@un.nosp@m.al.e.nosp@m.du.co
Parameters
kkthe wave vector module
muthe line of sight cosine
DFoGthe damping factor (Gaussian or Lorentzian)
linear_growth_ratethe linear growth rate
biasthe linear bias
sigmavthe streaming scale
kdfitting parameter
bbfitting parameter
a1fitting parameter
a2fitting parameter
a3fitting parameter
Pklinlinear power spectrum interpolator
Pknonlinnolinear power spectrum interpolator
Returns
\(P(k, \mu)\)

Definition at line 163 of file ModelFunction_TwoPointCorrelation.cpp.

◆ Pkmu_Scoccimarro_fitPezzotta()

double cbl::modelling::twopt::Pkmu_Scoccimarro_fitPezzotta ( const double  kk,
const double  mu,
const std::string  DFoG,
const double  linear_growth_rate,
const double  bias,
const double  sigmav,
const double  kd,
const double  kt,
const std::shared_ptr< cbl::glob::FuncGrid Pklin,
const std::shared_ptr< cbl::glob::FuncGrid Pknonlin 
)

the redshift-space galaxy power spectrum, as a function of \(k\) and \(\mu\), predicted by the Scoccimarro model

this function computes the redshift-space power spectrum \(P(k, \mu)\) for the Scoccimarro model, using fitting functions for \(P_{\delta\theta}(k)\) and \(P_{\theta\theta}(k)\) following Pezzotta et al. 2017 https://arxiv.org/abs/1612.05645, Mohammad et al. 2018 https://arxiv.org/abs/1807.05999, Bel et al. 2019 https://arxiv.org/abs/1809.09338 :

\[ P(k, \mu) = D_{FoG}(k, \mu, f \sigma_v) \left(b^2P_{\delta\delta}(k) + 2fb\mu^2P_{\delta\theta}(k) + f^2\mu^4P_{\theta\theta}(k)\right) \]

where \(f\) is the linear growth rate, \(b\) is the linear galaxy bias, \(\mu\) is the cosine of the angle between the line-of-sight and the comoving separation, \(D_{FoG}\) is a damping factor used to model the random peculiar motions at small scales, which can be either Gaussian:

\[ D_{FoG}(k, \mu, f, \sigma_v) = e^{-k^2\mu^2f^2\sigma_v^2} \]

or Lorentzian:

\[ D_{FoG}(k, \mu, f, \sigma_v) = \frac{1}{1+k^2\mu^2f^2\sigma_v^2} \]

and \(P_{\delta\delta}(k)\), \(P_{\delta\theta}(k)\) and \(P_{\theta\theta}(k)\) are the real-space matter power spectrum, the real-space density-velocity divergence cross-spectrum and the real-space velocity divergence auto-spectrum. \(P_{\delta\theta}(k)\) and \(P_{\theta\theta}(k)\) are approximated as follows:

\[ P_{\delta\theta}(k) = \left(P_{\delta\delta}(k)P^{lin}(k)e^{-k/k_\delta} \right)^{1/2} \,, \]

\[ P_{\theta\theta}(k) = P^{lin}(k)e^{-k/k_\theta} \]

where both the linear power spectrum \(P^{lin}(k)\), and the non-linear power spectrum \(P_{\delta\delta}(k)\) are computed by cbl::cosmology::Cosmology::Pk_matter, and \(k_\delta\), \(k_\theta\) are free parameters.

Author
J.E. Garcia-Farieta
joega.nosp@m.rcia.nosp@m.fa@un.nosp@m.al.e.nosp@m.du.co
Parameters
kkthe wave vector module
muthe line of sight cosine
DFoGthe damping factor (Gaussian or Lorentzian)
linear_growth_ratethe linear growth rate
biasthe linear bias
sigmavthe streaming scale
kdfitting parameter
ktfitting parameter
Pklinlinear power spectrum interpolator
Pknonlinnolinear power spectrum interpolator
Returns
\(P(k, \mu)\)

Definition at line 139 of file ModelFunction_TwoPointCorrelation.cpp.

◆ Pkmu_TNS()

double cbl::modelling::twopt::Pkmu_TNS ( const double  kk,
const double  mu,
const std::string  DFoG,
const double  linear_growth_rate,
const double  bias,
const double  sigmav,
const std::shared_ptr< cbl::glob::FuncGrid Pk_DeltaDelta,
const std::shared_ptr< cbl::glob::FuncGrid Pk_DeltaTheta,
const std::shared_ptr< cbl::glob::FuncGrid Pk_ThetaTheta,
const std::shared_ptr< cbl::glob::FuncGrid Pk_A11,
const std::shared_ptr< cbl::glob::FuncGrid Pk_A12,
const std::shared_ptr< cbl::glob::FuncGrid Pk_A22,
const std::shared_ptr< cbl::glob::FuncGrid Pk_A23,
const std::shared_ptr< cbl::glob::FuncGrid Pk_A33,
const std::shared_ptr< cbl::glob::FuncGrid Pk_B12,
const std::shared_ptr< cbl::glob::FuncGrid Pk_B13,
const std::shared_ptr< cbl::glob::FuncGrid Pk_B14,
const std::shared_ptr< cbl::glob::FuncGrid Pk_B22,
const std::shared_ptr< cbl::glob::FuncGrid Pk_B23,
const std::shared_ptr< cbl::glob::FuncGrid Pk_B24,
const std::shared_ptr< cbl::glob::FuncGrid Pk_B33,
const std::shared_ptr< cbl::glob::FuncGrid Pk_B34,
const std::shared_ptr< cbl::glob::FuncGrid Pk_B44 
)

the redshift-space galaxy power spectrum, as a function of \(k\) and \(\mu\), predicted by the TNS (Taruya, Nishimichi and Saito) model

this function computes the redshift-space power spectrum \(P(k, \mu)\) for the (Taruya, Nishimichi and Saito) TNS model, in 1-loop approximation using (standard) Perturbation Theory (see e.g. Taruya et. al, 2010 https://arxiv.org/abs/1006.0699 and Taruya et al., 2013 https://arxiv.org/abs/1301.3624):

\[ P(k, \mu) = D_{FoG}(k, \mu, f, \sigma_v)\left(b^2P_{\delta\delta}(k) + 2fb\mu^2P_{\delta\theta}(k) + f^2\mu^4P_{\theta\theta}(k) + b^3A(k, \mu, f) + b^4B(k, \mu, f)\right) \]

\[ A(k, \mu ; f) = j_{1} \int d^{3} r e^{i \boldsymbol{k} \cdot \boldsymbol{r}}\left\langle A_{1} A_{2} A_{3}\right\rangle_{c}=k \mu f \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{p_{z}}{p^{2}}\left\{B_{\sigma}(\boldsymbol{p}, \boldsymbol{k}-\boldsymbol{p},-\boldsymbol{k})-B_{\sigma}(\boldsymbol{p}, \boldsymbol{k},-\boldsymbol{k}-\boldsymbol{p})\right\}\, , \]

\[ B(k, \mu ; f)=j_{1}^{2} \int d^{3} r e^{i \boldsymbol{k} \cdot \boldsymbol{r}}\left\langle A_{1} A_{2}\right\rangle_{c}\left\langle A_{1} A_{3}\right\rangle_{c}=(k \mu f)^{2} \int \frac{d^{3} p}{(2 \pi)^{3}} F_{\sigma}(\boldsymbol{p}) F_{\sigma}(\boldsymbol{k}-\boldsymbol{p}) \]

where \(f\) is the linear growth rate, \(b\) is the linear galaxy bias, \(\mu\) is the cosine of the angle between the line-of-sight and the comoving separation, \(P_{\delta\delta}(k)\), \(P_{\delta\theta}(k)\) and \(P_{\theta\theta}(k)\) are the real-space matter power spectrum and the real-space density-velocity divergence cross-spectrum and the real-space velocity divergence auto-spectrum, computed at 1-loop using (Standard) Perturbation Theory as implemented in the CPT Library [http://www2.yukawa.kyoto-u.ac.jp/~atsushi.taruya/cpt_pack.html] by cbl::cosmology::Cosmology::Pk_TNS_dd_dt_tt, all the terms in the power spectrum correction correction terms are computed by cbl::cosmology::Cosmology::Pk_TNS_AB_terms_1loop, \(D_{FoG}\) is a damping factor used to model the random peculiar motions at small scales, which can be either Gaussian:

\[ D_{FoG}(k, \mu, f, \sigma_v) = e^{-k^2\mu^2f^2\sigma_v^2} \]

or Lorentzian:

\[ D_{FoG}(k, \mu, f, \sigma_v) = \frac{1}{1+k^2\mu^2f^2\sigma_v^2} \]

Author
J.E. Garcia-Farieta
joega.nosp@m.rcia.nosp@m.fa@un.nosp@m.al.e.nosp@m.du.co
Parameters
kkthe wave vector module
muthe line of sight cosine
DFoGthe damping factor (Gaussian or Lorentzian)
linear_growth_ratethe linear growth rate
biasthe linear bias
sigmavthe streaming scale
Pk_DeltaDeltapower spectrum interpolator
Pk_DeltaThetapower spectrum interpolator
Pk_ThetaThetapower spectrum interpolator
Pk_A11power spectrum interpolator
Pk_A12power spectrum interpolator
Pk_A22power spectrum interpolator
Pk_A23power spectrum interpolator
Pk_A33power spectrum interpolator
Pk_B12power spectrum interpolator
Pk_B13power spectrum interpolator
Pk_B14power spectrum interpolator
Pk_B22power spectrum interpolator
Pk_B23power spectrum interpolator
Pk_B24power spectrum interpolator
Pk_B33power spectrum interpolator
Pk_B34power spectrum interpolator
Pk_B44power spectrum interpolator
Returns
\(P(k, \mu)\)

Definition at line 185 of file ModelFunction_TwoPointCorrelation.cpp.

◆ true_k_mu_AP()

std::vector< double > cbl::modelling::twopt::true_k_mu_AP ( const double  kk,
const double  mu,
const double  alpha_perp,
const double  alpha_par 
)

true k and \(\mu\) power spectrum coordinates as a function of observed ones

this function computes k' and \(\mu'\) power spectrum coordinates in the true cosmology from k and \(\mu\) coordinates estimated in a fiducial cosmology, using the Alcock-Paczynski parameters (see e.g. Beutler et al. 2016, sec 5.2 ( https://arxiv.org/pdf/1607.03150.pdf):

\[ k' = \frac{k}{\alpha_\perp} \sqrt{1+\mu^2 \left[ \left( \frac{\alpha_\parallel}{\alpha_\perp}\right)^{-2}-1 \right]} \, , \]

\[ \mu' = \mu\frac{\alpha_\perp}{\alpha_\parallel} \frac{1}{\sqrt{1+\mu^2\left[\left( \frac{\alpha_\parallel}{\alpha_\perp} \right)^{-2}-1\right]}} \, , \]

Parameters
kkthe wave vector module
muthe line of sight cosine
alpha_perpthe shift transverse to the l.o.s.
alpha_parthe shift parallel to the l.o.s.
Returns
a vector containing k' and \(\mu'\) coordinates

Definition at line 46 of file ModelFunction_TwoPointCorrelation.cpp.

◆ wp_1halo()

std::vector< double > cbl::modelling::twopt::wp_1halo ( const std::vector< double >  rp,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

model for the 1-halo term of the projected two-point correlation function

this function computes the 1-halo term of the projected correlation function by integrating the redshift-space 2D correlation function (e.g. van den Bosch et al. 2012):

\[w_{p, 1halo}(r_p, z) = 2\int_{0}^{\pi_{max}}\xi_{1halo}(r_p, \pi, z)\,{\rm d}\pi\]

where the 1-halo term of the redshift-space galaxy correlation function, \(\xi_{1halo}(r_p, \pi, z)\), is computed by cbl::modelling::twopt::xi_1halo_zspace

Parameters
rp\(r_p\): the scale perpendicular to the line of sight at which the model is computed
inputspointer to the structure that contains the fixed input data used to construct the model
parametervector containing the model parameters
Returns
the 1-halo term of the projected two-point correlation function
Warning
This function accounts for residual redshift-space distortions (RRSD) caused by the finite integration range used with real data (see e.g. sec. 2.3 of van den Bosch et al. 2012). Its accuracy depends on the accuracy of the redshift-space distortion model used to describe \(\xi_g(r_p, \pi, z)\).

Definition at line 131 of file ModelFunction_TwoPointCorrelation_projected.cpp.

◆ wp_1halo_approx()

std::vector< double > cbl::modelling::twopt::wp_1halo_approx ( const std::vector< double >  rp,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

model for the 1-halo term of the projected two-point correlation function

this function estimates the 1-halo term of the projected correlation function by integrating the 1-halo term of the real-space spherically averaged two-point correlation function, as follows:

\[w_{p, 1halo}(r_p, z) = 2\int_{r_p}^{r_{out}}\xi_{1halo}(r, z)\frac{r\,{\rm d}r} {\sqrt{r^2-r_p^2}} \]

where \(r_{out}=\sqrt{r_p^2+r_{max}^2}\) and \(\xi_{1halo}(r, z)\) is computed by cbl::modelling::twopt::xi_1halo

in the limit \(r_{max}\rightarrow\infty\), this function is completely independent of peculiar velocities

Parameters
rp\(r_p\): the scale perpendicular to the line of sight at which the model is computed
inputspointer to the structure that contains the fixed input data used to construct the model
parametervector containing the model parameters
Returns
the 1-halo term of the projected two-point correlation function
Warning
This function does not account for residual redshift-space distortions (RRSD) caused by the finite integration range used (i.e. \(r_{max}<\infty\)). If it is used to model the projected correlation function measured from real data, it introduces a bias casued by neglecting the RRSD (see e.g. sec. 2.3 of van den Bosch et al. 2012). It is thus useful only for testing these errors, or for general theoretical investigations not dealing with real data.

Definition at line 76 of file ModelFunction_TwoPointCorrelation_projected.cpp.

◆ wp_2halo()

std::vector< double > cbl::modelling::twopt::wp_2halo ( const std::vector< double >  rp,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

model for the 2-halo term of the projected two-point correlation function

this function computes the 2-halo term of the projected correlation function by integrating the redshift-space 2D correlation function (e.g. van den Bosch et al. 2012):

\[w_{p, 2halo}(r_p, z) = 2\int_{0}^{\pi_{max}}\xi_{2halo}(r_p, \pi, z)\,{\rm d}\pi\]

where the 2-halo term of the redshift-space galaxy correlation function, \(\xi_{2halo}(r_p, \pi, z)\), is computed by cbl::modelling::twopt::xi_2halo_zspace

Parameters
rp\(r_p\): the scale perpendicular to the line of sight at which the model is computed
inputspointer to the structure that contains the fixed input data used to construct the model
parametervector containing the model parameters
Returns
the 2-halo term of the projected two-point correlation function
Warning
This function accounts for residual redshift-space distortions (RRSD) caused by the finite integration range used with real data (see e.g. sec. 2.3 of van den Bosch et al. 2012). Its accuracy depends on the accuracy of the redshift-space distortion model used to describe \(\xi_g(r_p, \pi, z)\).

Definition at line 140 of file ModelFunction_TwoPointCorrelation_projected.cpp.

◆ wp_2halo_approx()

std::vector< double > cbl::modelling::twopt::wp_2halo_approx ( const std::vector< double >  rp,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

model for the 2-halo term of the projected two-point correlation function

this function estimates the 2-halo term of the projected correlation function by integrating the 2-halo term of the real-space spherically averaged two-point correlation function, as follows:

\[w_{p, 2halo}(r_p, z) = 2\int_{r_p}^{r_{out}}\xi_{2halo}(r, z)\frac{r\,{\rm d}r} {\sqrt{r^2-r_p^2}} \]

where \(r_{out}=\sqrt{r_p^2+r_{max}^2}\) and \(\xi_{2halo}(r, z)\) is computed by cbl::modelling::twopt::xi_2halo

in the limit \(r_{max}\rightarrow\infty\), this function is completely independent of peculiar velocities

Parameters
rp\(r_p\): the scale perpendicular to the line of sight at which the model is computed
inputspointer to the structure that contains the fixed input data used to construct the model
parametervector containing the model parameters
Returns
the 2-halo term of the projected two-point correlation function
Warning
This function does not account for residual redshift-space distortions (RRSD) caused by the finite integration range used (i.e. \(r_{max}<\infty\)). If it is used to model the projected correlation function measured from real data, it introduces a bias casued by neglecting the RRSD (see e.g. sec. 2.3 of van den Bosch et al. 2012). It is thus useful only for testing these errors, or for general theoretical investigations not dealing with real data.

Definition at line 85 of file ModelFunction_TwoPointCorrelation_projected.cpp.

◆ wp_from_xi()

std::vector< double > cbl::modelling::twopt::wp_from_xi ( FunctionDoubleDoubleDoublePtrVectorRef  func,
const std::vector< double >  rp,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

function used to compute the projected two-point correlation function

this function is used to compute the projected correlation function by integrating the redshift-space 2D correlation function (e.g. van den Bosch et al. 2012):

\[w_{p}(r_p, z) = 2\int_{0}^{\pi_{max}}\xi(r_p, \pi, z)\,{\rm d}\pi\]

where the redshift-space galaxy correlation function, \(\xi(r_p, \pi, z)\), is either the 1-halo, the 2-halo, or the full-shape redshift-space correlation function, computed by either cbl::modelling::twopt::xi_1halo_zspace, cbl::modelling::twopt::xi_2halo_zspace, or cbl::modelling::twopt::xi_HOD_space, respectively

Parameters
functhe redshift-space two-point correlation function that will be integrated (it can be either the 1-halo, the 2-halo, or the full-shape correlation function)
rp\(r_p\): the scale perpendicular to the line of sight at which the model is computed
inputspointer to the structure that contains the fixed input data used to construct the model
parametervector containing the model parameters
Returns
the projected two-point correlation function
Warning
This function accounts for residual redshift-space distortions (RRSD) caused by the finite integration range used with real data (see e.g. sec. 2.3 of van den Bosch et al. 2012). Its accuracy depends on the accuracy of the redshift-space distortion model used to describe \(\xi_g(r_p, \pi, z)\).

Definition at line 103 of file ModelFunction_TwoPointCorrelation_projected.cpp.

◆ wp_from_xi_approx()

std::vector< double > cbl::modelling::twopt::wp_from_xi_approx ( FunctionVectorVectorPtrVectorRef  func,
const std::vector< double >  rp,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

function used to compute the projected two-point correlation function

this function is used to compute the projected correlation function by integrating the real-space spherically averaged two-point correlation function, as follows:

\[w_{p}(r_p, z) = 2\int_{r_p}^{r_{out}}\xi(r, z)\frac{r\,{\rm d}r} {\sqrt{r^2-r_p^2}} \]

where \(r_{out}=\sqrt{r_p^2+r_{max}^2}\) and \(\xi(r, z)\) is either the 1-halo, the 2-halo, or the full-shape real-space correlation function, computed by either cbl::modelling::twopt::xi_1halo, cbl::modelling::twopt::xi_2halo, or cbl::modelling::twopt::xi_HOD, respectively

in the limit \(r_{max}\rightarrow\infty\), this function is completely independent of peculiar velocities

Parameters
functhe two-point real-space correlation function that will be integrated (it can be either the 1-halo, the 2-halo, or the full-shape correlation function)
rp\(r_p\): the scale perpendicular to the line of sight at which the model is computed
inputspointer to the structure that contains the fixed input data used to construct the model
parametervector containing the model parameters
Returns
the projected two-point correlation function
Warning
This function does not account for residual redshift-space distortions (RRSD) caused by the finite integration range used (i.e. \(r_{max}<\infty\)). If it is used to model the projected correlation function measured from real data, it introduces a bias casued by neglecting the RRSD (see e.g. sec. 2.3 of van den Bosch et al. 2012). It is thus useful only for testing these errors, or for general theoretical investigations not dealing with real data.

Definition at line 47 of file ModelFunction_TwoPointCorrelation_projected.cpp.

◆ wp_from_Xi_rppi()

std::vector< double > cbl::modelling::twopt::wp_from_Xi_rppi ( const std::vector< double >  rp,
const double  pimax,
const std::string  model,
const std::vector< double >  parameter,
const std::vector< std::shared_ptr< glob::FuncGrid >>  pk_interp,
const double  prec = 1.e-5,
const double  alpha_perp = 1.,
const double  alpha_par = 1. 
)

the projected two-point correlation function

The function computes the projected two-point correlation function from the 2D two-point correlation function in Cartesian coordinates:

\[ w_p(r_p) = \int_0^{\pi_{max}} \mathrm{d}\pi \xi(r_p, \pi) \]

where \(xi(r_p, \pi)\) is the Cartesian two-point correlation function

Parameters
rpvector of scales transverse to the line of sight
pimaxthe maximum scale of integration
modelthe \(P(k,\mu)\) model
parametervector containing parameter values
pk_interpvector containing power spectrum interpolating functions
precthe integral precision
alpha_perpthe shift transverse to the l.o.s.
alpha_parthe shift parallel to the l.o.s.
Returns
the cartesian two-point correlation function.

Definition at line 541 of file ModelFunction_TwoPointCorrelation.cpp.

◆ wp_HOD()

std::vector< double > cbl::modelling::twopt::wp_HOD ( const std::vector< double >  rp,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

HOD model of the projected two-point correlation function.

this function computes:

\[w_p(r_p, z) = w_{p,1halo}(r_p, z)+w_{p,2halo}(r_p, z)\]

where \(w_{p,1halo}(r_p)\) and \(w_{p,2halo}(r_p)\) are computed by cbl::modelling::twopt::wp_1halo and cbl::modelling::twopt::wp_2halo, respectively

Parameters
rp\(r_p\): the scale perpendicular to the line of sight at which the model is computed
inputspointer to the structure that contains the fixed input data used to construct the model
parametervector containing the model parameters
Returns
the HOD projected two-point correlation function
Warning
This function accounts for residual redshift-space distortions (RRSD) caused by the finite integration range used with real data (see e.g. sec. 2.3 of van den Bosch et al. 2012). Its accuracy depends on the accuracy of the redshift-space distortion model used to describe \(\xi_g(r_p, \pi, z)\).

Definition at line 149 of file ModelFunction_TwoPointCorrelation_projected.cpp.

◆ wp_HOD_approx()

std::vector< double > cbl::modelling::twopt::wp_HOD_approx ( const std::vector< double >  rp,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

HOD model of the projected two-point correlation function.

the function computes:

\[w_p(r_p, z) = w_{p,1halo}(r_p, z)+w_{p,2halo}(r_p, z)\]

where \(w_{p,1halo}(r_p)\) and \(w_{p,2halo}(r_p)\) are computed by cbl::modelling::twopt::wp_1halo_approx and cbl::modelling::twopt::wp_2halo_approx, respectively

in the limit \(r_{max}\rightarrow\infty\), this function is completely independent of peculiar velocities

Parameters
rp\(r_p\): the scale perpendicular to the line of sight at which the model is computed
inputspointer to the structure that contains the fixed input data used to construct the model
parametervector containing the model parameters
Returns
the HOD projected two-point correlation function
Warning
This function does not account for residual redshift-space distortions (RRSD) caused by the finite integration range used (i.e. \(r_{max}<\infty\)). If it is used to model the projected correlation function measured from real data, it introduces a bias casued by neglecting the RRSD (see e.g. sec. 2.3 of van den Bosch et al. 2012). It is thus useful only for testing these errors, or for general theoretical investigations not dealing with real data.

Definition at line 94 of file ModelFunction_TwoPointCorrelation_projected.cpp.

◆ xi0_BAO_sigmaNL()

std::vector< double > cbl::modelling::twopt::xi0_BAO_sigmaNL ( const std::vector< double >  rad,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

model for the BAO signal in the monopole of the two-point correlation function

the function computes:

\[\xi_0(s) = B^2 \cdot \xi_{\rm DM}(\alpha\cdot s, \Sigma_{NL}) + A_0 + A_1/s + A_2/s^2\]

the model has 6 parameters:

  • \(\Sigma_{NL}\)
  • \(\alpha\)
  • \(B\)
  • \(A_0\)
  • \(A_1\)
  • \(A_2\)

the dark matter two-point correlation function is fixed and provided in input

Parameters
radthe scale at which the model is computed
inputspointer to the structure that contains the dark matter power spectrum
parameter6D vector containing the input parameters
Returns
the monopole of the two-point correlation function

Definition at line 48 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.

◆ xi0_damped_bias_sigmaz()

std::vector< double > cbl::modelling::twopt::xi0_damped_bias_sigmaz ( const std::vector< double >  rad,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

the damped two-point correlation monopole; from Sereno et al. 2015

The function computes the damped two-point correlation monopole:

\(\xi(s) = b^2 \xi'(s) + b \xi''(s) + \xi'''(s) \, ;\)

where b is the linear bias and the terms \(\xi'(s)\), \(\xi''(s)\), \(\xi'''(s)\) are the Fourier anti-transform of the power spectrum terms obtained integrating the redshift space 2D power spectrum along \(\mu\) (see cbl::modelling::twopt.:damped_Pk_terms, see cbl::modelling::twopt.:damped_Xi).

the model has 2 parameters:

  • bias the linear bias
  • \(\sigma_z$\) the redshift error
Parameters
radthe scale at which the model is computed
inputspointer to the structure that contains the cosmological paramters used to compute the dark matter two-point correlation function
parameter1D vector containing the linear bias
Returns
the damped two-point correlation monopole.

Definition at line 685 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.

◆ xi0_damped_scaling_relation_sigmaz()

std::vector< double > cbl::modelling::twopt::xi0_damped_scaling_relation_sigmaz ( const std::vector< double >  rad,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

the damped two-point correlation monopole; from Sereno et al. 2015

The function computes the damped two-point correlation monopole:

\(\xi(s) = b^2 \xi'(s) + b \xi''(s) + \xi'''(s) \, ;\)

where b is the linear bias and the terms \(\xi'(s)\), \(\xi''(s)\), \(\xi'''(s)\) are the Fourier anti-transform of the power spectrum terms obtained integrating the redshift space 2D power spectrum along \(\mu\) (see cbl::modelling::twopt.:damped_Pk_terms, see cbl::modelling::twopt.:damped_Xi).

the model has 4 parameters:

  • M0 the intercept of the scaling relation
  • slope the slope of the scaling relation
  • scatter the scattr of the scaling relation
  • \(\sigma_z$\) the redshift error

the linear bias is computed and used in the modelling. It is provided as an output parameter

Parameters
radthe scale at which the model is computed
inputspointer to the structure that contains the cosmological paramters used to compute the dark matter two-point correlation function
parameter1D vector containing the linear bias
Returns
the damped two-point correlation monopole.

Definition at line 413 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.

◆ xi0_damped_scaling_relation_sigmaz_cosmology()

std::vector< double > cbl::modelling::twopt::xi0_damped_scaling_relation_sigmaz_cosmology ( const std::vector< double >  rad,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

the damped two-point correlation monopole; from Sereno et al. 2015

The function computes the damped two-point correlation monopole:

\(\xi(s) = b^2 \xi'(s) + b \xi''(s) + \xi'''(s) \, ;\)

where b is the linear bias and the terms \(\xi'(s)\), \(\xi''(s)\), \(\xi'''(s)\) are the Fourier anti-transform of the power spectrum terms obtained integrating the redshift space 2D power spectrum along \(\mu\) (see cbl::modelling::twopt.:damped_Pk_terms, see cbl::modelling::twopt.:damped_Xi).

Parameters
radthe scale at which the model is computed
inputspointer to the structure that contains the cosmological paramters used to compute the dark matter two-point correlation function
parameter1D vector containing the linear bias
Returns
the damped two-point correlation monopole.

Definition at line 461 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.

◆ xi0_linear()

std::vector< double > cbl::modelling::twopt::xi0_linear ( const std::vector< double >  rad,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

model for the monopole of the two-point correlation function

the function computes:

\[\xi_0(s) = \left[ (b\sigma_8)^2 + \frac{2}{3} f\sigma_8 \cdot b\sigma_8 + \frac{1}{5}(f\sigma_8)^2 \right] \cdot \xi_{\rm DM}(\alpha\cdot s)/\sigma_8^2 + A_0 + A_1/s + A_2/s^2\]

the model has 6 parameters:

  • \(\alpha\)
  • \(f(z)\sigma_8(z)\)
  • \(b(z)\sigma_8(z)\)
  • \(A_0\)
  • \(A_1\)
  • \(A_2\)

the dark matter two-point correlation function is fixed and provided in input

Parameters
radthe scale at which the model is computed
inputspointer to the structure that contains the dark matter two-point correlation function and \(\sigma_8(z)\), computed at a given (fixed) cosmology
parameter6D vector containing the input parameters
Returns
the monopole of the two-point correlation function

Definition at line 97 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.

◆ xi0_linear_bias_cosmology()

std::vector< double > cbl::modelling::twopt::xi0_linear_bias_cosmology ( const std::vector< double >  rad,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

model for the monopole of the two-point correlation function

the function computes:

\[\xi_0(s) = \left[ b^2 + \frac{2}{3}f \cdot b + \frac{1}{5}f^2 \right] \cdot \xi_{\rm DM} \left( \frac{D_V(z)}{D_V^{fid}(z)}\cdot s \right) \]

the model has 1+n parameters:

  • \(b\)
  • cosmological paramters

the dark matter two-point correlation function is computed using the input cosmological parameters

Parameters
radthe scale at which the model is computed
inputspointer to the structure that contains the cosmological paramters used to compute the dark matter two-point correlation function
parameter1D vector containing the linear bias
Returns
the monopole of the two-point correlation function

alpha

Definition at line 375 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.

◆ xi0_linear_cosmology()

std::vector< double > cbl::modelling::twopt::xi0_linear_cosmology ( const std::vector< double >  rad,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

model for the monopole of the two-point correlation function

the function computes:

\[\xi_0(s) = \left[ (b\sigma_8)^2 + \frac{2}{3} f\sigma_8 \cdot b\sigma_8 + \frac{1}{5}(f\sigma_8)^2 \right] \cdot \xi_{\rm DM}(\alpha\cdot s)/\sigma_8^2 + A_0 + A_1/s + A_2/s^2\]

the model has 6 parameters:

  • \(\alpha\)
  • \(f(z)\sigma_8(z)\)
  • \(b(z)\sigma_8(z)\)
  • \(A_0\)
  • \(A_1\)
  • \(A_2\)

the dark matter two-point correlation function is computed using the input cosmological parameters

Parameters
radthe scale at which the model is computed
inputspointer to the structure that contains the cosmological paramters used to compute the dark matter two-point correlation function
parameter1D vector containing the linear bias
Returns
the monopole of the two-point correlation function

Definition at line 330 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.

◆ xi0_linear_cosmology_clusters()

std::vector< double > cbl::modelling::twopt::xi0_linear_cosmology_clusters ( const std::vector< double >  rad,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

model for the monopole of the two-point correlation function, the bias is computed by the input cluster masses

the function computes:

\[\xi_0(s) = \left[ (b\sigma_8)^2 + \frac{2}{3} f\sigma_8 \cdot b\sigma_8 + \frac{1}{5}(f\sigma_8)^2 \right] \cdot \xi_{\rm DM}(s)/\sigma_8^2\]

the model has N cosmological parameters

the dark matter two-point correlation function and the linear effective bias are computed using the input cosmological parameters

Parameters
radthe scale at which the model is computed
inputspointer to the structure that contains the cosmological paramters used to compute the dark matter two-point correlation function
parameter1D vector containing the linear bias
Returns
the monopole of the two-point correlation function

alpha

Definition at line 840 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.

◆ xi0_linear_cosmology_clusters_selection_function()

std::vector< double > cbl::modelling::twopt::xi0_linear_cosmology_clusters_selection_function ( const std::vector< double >  rad,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

model for the monopole of the redshift-space two-point correlation function of galaxy clusters, considering the selection function

the function computes:

\[ \xi_0(s) = \xi_{DM}\left(\frac{D_V(z)}{D_V^{fit}(z)}\cdot s\right) b^2\left[1 + \frac{2\beta}{3} + \frac{\beta^2}{5}\right] \]

where \( \beta=\beta(z)=\frac{f(z)}{b(z)} \). The Kaiser factor \( \left[1 + \frac{2\beta}{3} + \frac{\beta^2}{5}\right] \) is computed by cbl::xi_ratio, while the linear growth rate \( f(z) \) is computed by cbl::cosmology::Cosmology::linear_growth_rate

the model has 1+n parameters:

  • the bias \(b\)
  • n cosmological paramters provided in input

the dark matter two-point correlation function is computed using the input cosmological parameters

Parameters
radthe scale at which the model is computed
inputspointer to the structure that contains the cosmological paramters used to compute the dark matter two-point correlation function
parameter1D vector containing the linear bias
Returns
the monopole of the two-point correlation function in redshift-space

Definition at line 893 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.

◆ xi0_linear_LinearPoint()

std::vector< double > cbl::modelling::twopt::xi0_linear_LinearPoint ( const std::vector< double >  rad,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

model for the monopole of the two-point correlation function

the function computes:

\(\xi_0(s) = \left[ (b\sigma_8)^2 + \frac{2}{3} f\sigma_8 \cdot b\sigma_8 + \frac{1}{5}(f\sigma_8)^2 \right] \cdot \xi_{\rm DM}(\alpha\cdot s)/\sigma_8^2 + A_0 + A_1/s + A_2/s^2\)

the model has 6 parameters:

  • \(\alpha\)
  • \(f(z)\sigma_8(z)\)
  • \(b(z)\sigma_8(z)\)
  • \(A_0\)
  • \(A_1\)
  • \(A_2\)

the dark matter two-point correlation function is fixed and provided in input

Parameters
radthe scale at which the model is computed
inputspointer to the structure that contains the dark matter two-point correlation function and \(\sigma_8(z)\), computed at a given (fixed) cosmology
parameter6D vector containing the input parameters
Returns
the monopole of the two-point correlation function

Definition at line 218 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.

◆ xi0_linear_one_cosmo_par_clusters()

std::vector< double > cbl::modelling::twopt::xi0_linear_one_cosmo_par_clusters ( const std::vector< double >  rad,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

model for the monopole of the two-point correlation function, the bias is computed by the input cluster masses, with only \(sigma_8\) as a free parameter

the function computes:

\[\xi_0(s) = \left[ (b\sigma_8)^2 + \frac{2}{3} f\sigma_8 \cdot b\sigma_8 + \frac{1}{5}(f\sigma_8)^2 \right] \cdot \xi_{\rm DM}(s)/\sigma_8^2\]

the model has 1 cosmological parameter

the dark matter two-point correlation function and the linear effective bias are computed using the input cosmological parameters

Parameters
radthe scale at which the model is computed
inputspointer to the structure that contains the cosmological paramters used to compute the dark matter two-point correlation function
parameter1D vector containing the cosmological parameter
Returns
the monopole of the two-point correlation function

Definition at line 770 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.

◆ xi0_linear_sigma8_bias()

std::vector< double > cbl::modelling::twopt::xi0_linear_sigma8_bias ( const std::vector< double >  rad,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

model for the monopole of the two-point correlation function in redshift space

the function computes:

\[\xi_0(s) = \left[ (b\sigma_8)^2 + \frac{2}{3} f(z)\sigma_8(z) \cdot b(z)\sigma_8(z) + \frac{1}{5}(f(z)^2\sigma_8(z)^2) \right] \cdot \xi_{\rm DM}(s)\frac{\sigma_8^2}{\sigma_8^2(z)} \]

the model has 2 parameters:

  • \(\sigma_8(z)\)
  • \(b(z)\)

the dark matter two-point correlation function is computed using the input cosmological parameters

Parameters
radthe scale at which the model is computed
inputspointer to the structure that contains the cosmological paramters used to compute the dark matter two-point correlation function
parameter1D vector containing the linear bias
Returns
the monopole of the two-point correlation function

Definition at line 293 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.

◆ xi0_linear_sigma8_clusters()

std::vector< double > cbl::modelling::twopt::xi0_linear_sigma8_clusters ( const std::vector< double >  rad,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

model for the monopole of the two-point correlation function, the bias is computed by the input cluster masses, with only \(sigma_8\) as a free parameter

the function computes:

\[\xi_0(s) = \left[ (b\sigma_8)^2 + \frac{2}{3} f\sigma_8 \cdot b\sigma_8 + \frac{1}{5}(f\sigma_8)^2 \right] \cdot \xi_{\rm DM}(s)/\sigma_8^2\]

the model has 1 parameter: \(\sigma_8\)

the dark matter two-point correlation function and the linear effective bias are computed using the input cosmological parameters

Parameters
radthe scale at which the model is computed
inputspointer to the structure that contains the cosmological paramters used to compute the dark matter two-point correlation function
parameter1D vector containing the linear bias
Returns
the monopole of the two-point correlation function

Definition at line 705 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.

◆ xi0_linear_two_cosmo_pars_clusters()

std::vector< double > cbl::modelling::twopt::xi0_linear_two_cosmo_pars_clusters ( const std::vector< double >  rad,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

model for the monopole of the two-point correlation function, the bias is computed by the input cluster masses, with only \(sigma_8\) as a free parameter

the function computes:

\[\xi_0(s) = \left[ (b\sigma_8)^2 + \frac{2}{3} f\sigma_8 \cdot b\sigma_8 + \frac{1}{5}(f\sigma_8)^2 \right] \cdot \xi_{\rm DM}(s)/\sigma_8^2\]

the model has 2 cosmological parameters

the dark matter two-point correlation function and the linear effective bias are computed using the input cosmological parameters

Parameters
radthe scale at which the model is computed
inputspointer to the structure that contains the cosmological paramters used to compute the dark matter two-point correlation function
parameter2D vector containing the cosmological parameters
Returns
the monopole of the two-point correlation function

the AP parameter

Definition at line 804 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.

◆ xi0_polynomial_LinearPoint()

std::vector< double > cbl::modelling::twopt::xi0_polynomial_LinearPoint ( const std::vector< double >  rad,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

model for the monopole of the two-point correlation function

the function computes the monopole as a polynomial of used-defined order

Parameters
radthe scale at which the model is computed
inputspointer to the structure that contains the dark matter two-point correlation function and \(\sigma_8(z)\), computed at a given (fixed) cosmology
parameter6D vector containing the input parameters
Returns
the monopole of the two-point correlation function

Definition at line 133 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.

◆ xi2D_dispersion()

std::vector< std::vector< double > > cbl::modelling::twopt::xi2D_dispersion ( const std::vector< double >  rp,
const std::vector< double >  pi,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

model for the 2D two-point correlation function, in Cartesian coordinates

the function computes \(\xi(r_p,\pi)\) with the dispersion model (see e.g. Marulli et al. 2012 http://arxiv.org/abs/1203.1002), which is computed with either cbl::xi2D_lin_model or cbl::xi2D_model

Parameters
rpthe scale perpendicular to the line of sight at which the model is computed
pithe scale parallel to the line of sight at which the model is computed
inputspointer to the structure that contains all the data required to implement the dispersion model
parameter5D vector containing the input parameters
Returns
the 2D two-point correlation function in redshift space

Definition at line 48 of file ModelFunction_TwoPointCorrelation2D_cartesian.cpp.

◆ xi_1halo()

vector< double > cbl::modelling::twopt::xi_1halo ( const std::vector< double >  rad,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

model for the 1-halo term of the monopole of the two-point correlation function

this function computes the 1-halo term of the two-point correlation function by Fourier transforming the 1-halo term of the power spectrum:

\[\xi_{1halo}(r, z) = \frac{1}{2\pi^2}\int_{0}^{k_{max}}{\rm d}k\, k^2P_{1halo}(k, z)\frac{\sin (kr)}{kr}\]

where the 1-halo term of the power spectrum \(P_{1halo}(k, z)\), is computed by cbl::modelling::twopt::Pk_1halo

so the integral that is actually computed is the following:

\[\xi_{1halo}(r, z) = \frac{1}{2\pi^2}\int_{0}^{k_{max}}{\rm d}k\, \left[P_{cs}(k, z)+P_{ss}(k, z)\right]\frac{k\sin (kr)}{r} = \]

\[= \frac{ln(10)}{2\pi^2n_{gal}^2(z)}\int_{0}^{k_{max}}{\rm d}k\, \int_{log(M_{min})}^{log(M_{max})}{\rm d} log(M_h)M_h\, \tilde{u}_h(k, M_h, z)\,n_{h, interp}(M_h, z)\,\left[ 2<N_{cen}N_{sat}>(M_h)\,+ <N_{sat}(N_{sat}-1)>(M_h)\, \tilde{u}_h(k, M_h, z)\right]\frac{k\sin (kr)}{r} \]

where the galaxy number density, \(n_{gal}(z)\) is computed by cbl::modelling::twopt::ng, the Fourier transform of the halo density profile \(\tilde{u}_h(k, M_h, z)\) is computed by cbl::cosmology::Cosmology::density_profile_FourierSpace, \(n_{h, interp}(M_h, z)\) is an interpolation of the halo mass function cosmology::Cosmology::mass_function, \(<N_{cen}N_{sat}>(M_h)\) is computed by cbl::modelling::twopt::NcNs and \(<N_{sat}(N_{sat}-1)>(M_h)\) is computed by cbl::modelling::twopt::NsNs1

Parameters
radthe scale at which the model is computed
inputspointer to the structure that contains the fixed input data used to construct the model
parametervector containing the model parameters
Returns
the 1-halo term of the monopole of the two-point correlation function

Definition at line 1169 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.

◆ xi_1halo_zspace()

double cbl::modelling::twopt::xi_1halo_zspace ( const double  rp,
const double  pi,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

model for the 1-halo term of the redshift-space monopole of the two-point correlation function

this function computes the 1-halo term of redshift-space spherically averaged correlation function with a modified version of the Kaiser model (sec. 2.3 of van den Bosch et al. 2012); it is used to derive the model of the 1-halo term of the projected correlation function accounting for residual redshift-space distortions caused by finite integration range

\[\xi_{1halo}(r_p, \pi, z) = \sum_{l=0}^2\xi_{2l}(r, z)\mathcal{P}_{2l}(\mu)\]

where

\[\xi_0(r, z) = \left(1 + \frac{2}{3}\beta + \frac{1}{5}\beta^2\right)\xi_{1halo}(r, z)\,,\]

\[\xi_2(r, z) = \left(\frac{4}{3}\beta + \frac{4}{7}\beta^2\right)\left[\xi_{1halo}(r, z)-3J_3(r, z)\right]\,,\]

\[\xi_4(r, z) = \frac{8}{35}\beta^2\left[\xi_{1halo}(r, z)+\frac{15}{2}J_3(r, z)-\frac{35}{2}J_5(r, z)\right]\,,\]

\[J_n(r, z) = \frac{1}{r^n}\int_0^r\xi_{1halo}(y, z)y^{n-1}{\rm d}y\]

the real-space galaxy correlation function \(\xi_{g, 1halo}(r, z)\) is computed by cbl::modelling::twopt::xi_1halo

Parameters
rpthe scale perpendicular to the line of sight at which the model is computed
pithe scale parallel to the line of sight at which the model is computed
inputspointer to the structure that contains the fixed input data used to construct the model
parametervector containing the model parameters
Returns
the 1-halo term of the redshift-space monopole of the two-point correlation function

Definition at line 1274 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.

◆ xi_2halo()

vector< double > cbl::modelling::twopt::xi_2halo ( const std::vector< double >  rad,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

model for the 2-halo term of the monopole of the two-point correlation function

this function computes the 2-halo term of the two-point correlation function by Fourier transforming the 2-halo term of the power spectrum:

\[\xi_{2halo}(r, z) = \frac{1}{2\pi^2}\int_{0}^{k_{max}}{\rm d}k\,k^2P_{2halo}(k, z)\frac{\sin (kr)}{kr}\]

where the 2-halo term of the power spectrum \(P_{2halo}(k, z)\), is computed by cbl::modelling::twopt::Pk_2halo

so the integral that is actually computed is the following:

\[\xi_{2halo}(r, z) = \frac{ln(10)}{2\pi^2n_{gal}^2(z)}\int_{0}^{k_{max}}{\rm d}k\, P_{m, interp}(k, z)\,\int_{log(M_{min})}^{log(M_{max})}{\rm d} log(M_h)M_h\, N_{gal}(M_h)\,n_{h, interp}(M_h, z)\,\,b_{h, interp}(M_h, z)\,\tilde{u}_h(k, M_h, z)\frac{k\sin (kr)}{r} \]

where the galaxy number density, \(n_{gal}(z)\) is computed by cbl::modelling::twopt::ng, \(P_{m, interp}(k, z)\) is an interpolation of the matter power spectrum cbl::cosmology::Cosmology::Pk, the average number of galaxies hosted in a dark matter halo of a given mass, \(N_{gal}(M_h)\), is computed by cbl::modelling::twopt::Navg, \(n_{h, interp}(M_h, z)\) is an interpolation of the halo mass function cosmology::Cosmology::mass_function, \(b_{h, interp}(M_h, z)\) is an interpolation of the halo bias cosmology::Cosmology::bias_halo and the Fourier transform of the halo density profile \(\tilde{u}_h(k, M_h, z)\) is computed by cbl::cosmology::Cosmology::density_profile_FourierSpace

Parameters
radthe scale at which the model is computed
inputspointer to the structure that contains the fixed input data used to construct the model
parametervector containing the model parameters
Returns
the 2-halo term of the monopole of the two-point correlation function

Definition at line 1190 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.

◆ xi_2halo_zspace()

double cbl::modelling::twopt::xi_2halo_zspace ( const double  rp,
const double  pi,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

model for the 2-halo term of the redshift-space monopole of the two-point correlation function

this function computes the 2-halo term of redshift-space spherically averaged correlation function with a modified version of the Kaiser model (sec. 2.3 of van den Bosch et al. 2012); it is used to derive the model of the 2-halo term of the projected correlation function accounting for residual redshift-space distortions caused by finite integration range

\[\xi_{2halo}(r_p, \pi, z) = \sum_{l=0}^2\xi_{2l}(r, z)\mathcal{P}_{2l}(\mu)\]

where

\[\xi_0(r, z) = \left(1 + \frac{2}{3}\beta + \frac{1}{5}\beta^2\right)\xi_{2halo}(r, z)\,,\]

\[\xi_2(r, z) = \left(\frac{4}{3}\beta + \frac{4}{7}\beta^2\right)\left[\xi_{2halo}(r, z)-3J_3(r, z)\right]\,,\]

\[\xi_4(r, z) = \frac{8}{35}\beta^2\left[\xi_{2halo}(r, z)+\frac{15}{2}J_3(r, z)-\frac{35}{2}J_5(r, z)\right]\,,\]

\[J_n(r, z) = \frac{1}{r^n}\int_0^r\xi_{2halo}(y, z)y^{n-1}{\rm d}y\]

the real-space galaxy correlation function \(\xi_{g, 2halo}(r, z)\) is computed by cbl::modelling::twopt::xi_2halo

Parameters
rpthe scale perpendicular to the line of sight at which the model is computed
pithe scale parallel to the line of sight at which the model is computed
inputspointer to the structure that contains the fixed input data used to construct the model
parametervector containing the model parameters
Returns
the 2-halo term of redshift-space monopole of the two-point correlation function

Definition at line 1283 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.

◆ xi_HOD()

std::vector< double > cbl::modelling::twopt::xi_HOD ( const std::vector< double >  rad,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

HOD model of the monopole of the two-point correlation function.

the function computes:

\[\xi(r, z) = \xi_{1halo}(r, z)+\xi_{2halo}(r, z)\]

where \(\xi_{1halo}(r, z)\) and \(\xi_{2halo}(r, z)\) are computed by cbl::modelling::twopt::xi_1halo and cbl::modelling::twopt::xi_2halo, respectively

Parameters
radthe scale at which the model is computed
inputspointer to the structure that contains the fixed input data used to construct the model
parametervector containing the model parameters
Returns
the HOD monopole of the two-point correlation function

Definition at line 1212 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.

◆ xi_HOD_zspace()

double cbl::modelling::twopt::xi_HOD_zspace ( const double  rp,
const double  pi,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

HOD model of the redshift-space monopole of the two-point correlation function.

this function computes the redshift-space spherically averaged correlation function with a modified version of the Kaiser model (sec. 2.3 of van den Bosch et al. 2012); it is used to derive the model of the projected correlation function accounting for residual redshift-space distortions caused by finite integration range

\[\xi(r_p, \pi, z) = \xi_{1halo}(r_p, \pi, z)+\xi_{2halo}(r_p, \pi, z)\]

where \(\xi_{1halo}(r_p, \pi, z)\) and \(\xi_{2halo}(r_p, \pi, z)\) are computed by cbl::modelling::twopt::xi_1halo_zspace and cbl::modelling::twopt::xi_2halo_zspace, respectively

Parameters
rpthe scale perpendicular to the line of sight at which the model is computed
pithe scale parallel to the line of sight at which the model is computed
inputspointer to the structure that contains the fixed input data used to construct the model
parametervector containing the model parameters
Returns
the HOD redshift-space monopole of the two-point correlation function

Definition at line 1292 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.

◆ Xi_l() [1/2]

std::vector< std::vector< double > > cbl::modelling::twopt::Xi_l ( const std::vector< double >  rr,
const int  nmultipoles,
const std::string  model,
const std::vector< double >  parameter,
const std::vector< std::shared_ptr< glob::FuncGrid >>  pk_interp,
const double  prec = 1.e-5,
const double  alpha_perp = 1.,
const double  alpha_par = 1. 
)

the multipole of order l of the two-point correlation function

The function computes the multipoles of the two-point correlation function:

\[ \xi_l(s) = i^l \int \frac{\mathrm{d} k}{2\pi^2} k^2 P_l(k) j_l(ks) \]

where \(j_l(ks)\) are the Bessel functions, and \(P_l(k)\) is computed by cbl::modelling::twopt::Pk_l

Parameters
rrvector of scales to compute multipoles
nmultipolesthe number of (even) multipoles to compute
modelthe \(P(k,\mu)\) model
parametervector containing parameter values
pk_interpvector containing power spectrum interpolating functions
precthe integral precision
alpha_perpthe shift transverse to the l.o.s.
alpha_parthe shift parallel to the l.o.s.
Returns
the multipole of order l of the two-point correlation function

Definition at line 453 of file ModelFunction_TwoPointCorrelation.cpp.

◆ Xi_l() [2/2]

std::vector< double > cbl::modelling::twopt::Xi_l ( const std::vector< double >  rr,
const std::vector< int >  dataset_order,
const std::vector< bool >  use_pole,
const std::string  model,
const std::vector< double >  parameter,
const std::vector< std::shared_ptr< glob::FuncGrid >>  pk_interp,
const double  prec = 1.e-5,
const double  alpha_perp = 1.,
const double  alpha_par = 1. 
)

the multipole of order l of the two-point correlation function

The function computes the multipoles of the two-point correlation function:

\[ \xi_l(s) = i^l \int \frac{\mathrm{d} k}{2\pi^2} k^2 P_l(k) j_l(ks) \]

where \(j_l(ks)\) are the Bessel functions, and \(P_l(k)\) is computed by cbl::modelling::twopt::Pk_l

Parameters
rrvector of scales to compute multipoles
dataset_ordervector that specify the multipole to be computed for each scale
use_polevector of booleans specifying if a given multipole should be computed
modelthe \(P(k,\mu)\) model
parametervector containing parameter values
pk_interpvector containing power spectrum interpolating functions
precthe integral precision
alpha_perpthe shift transverse to the l.o.s.
alpha_parthe shift parallel to the l.o.s.
Returns
the multipole of order l of the two-point correlation function

Definition at line 471 of file ModelFunction_TwoPointCorrelation.cpp.

◆ Xi_polar()

double cbl::modelling::twopt::Xi_polar ( const double  rad_fid,
const double  mu_fid,
const double  alpha_perpendicular,
const double  alpha_parallel,
const std::vector< std::shared_ptr< cbl::glob::FuncGrid >>  xi_multipoles 
)

the polar two-point correlation function

The function computes the polar two-point correlation function from its multipoles as expressed in Kazin et al. 2013 (https://arxiv.org/pdf/1303.4391.pdf, appendix A)

\[ \xi(s_{\mathrm{true}}, \mu_{\mathrm{true}}) = \sum\xi_l(s_{\mathrm{true}}(s_{\mathrm{fid}}, \mu_{\mathrm{fid}}, \alpha_{\perp}, \alpha_{\parallel})) L_l(\mu_{\mathrm{true}}(\mu_{\mathrm{fid}}, \alpha_{\perp}, \alpha_{\parallel})) \]

where \(\xi_l(s)\) are the two-point correlation function monopoles up to l=4, and \( \mathcal{L}_l(\mu)\) are the Legendre polynomial.

The relations between fiducial and true quantities are:

\[ s_{\mathrm{true}} = s_{\mathrm{fid}} \sqrt{\alpha_{\|}^{2} \mu_{\mathrm{fid}}^{2}+\alpha_{\perp}^2\left(1-\mu_{\mathrm{fid}}^2\right)} \]

\[ \mu_{\mathrm{true}} = \mu_{\mathrm{fid}} \frac{\alpha_{\|}}{\sqrt{\alpha_{\|}^{2} \mu_{\mathrm{fid}}^{2}+\alpha_{\perp}^2\left(1-\mu_{\mathrm{fid}}^2\right)}} \]

Parameters
rad_fidfiducial separation
mu_fidfiducial \(\mu\)
alpha_perpendicularAlcock-Paczynski perpendicular parameter
alpha_parallelAlcock-Paczynski perpendicular parameter
xi_multipolesvector containing two-point correlation function multipoles interpolating functions
Returns
the polar two-point correlation function.

Definition at line 492 of file ModelFunction_TwoPointCorrelation.cpp.

◆ Xi_rppi()

std::vector< std::vector< double > > cbl::modelling::twopt::Xi_rppi ( const std::vector< double >  rp,
const std::vector< double >  pi,
const std::string  model,
const std::vector< double >  parameter,
const std::vector< std::shared_ptr< glob::FuncGrid >>  pk_interp,
const double  prec = 1.e-5,
const double  alpha_perp = 1.,
const double  alpha_par = 1. 
)

the cartesian two-point correlation function

The function computes the cartesian two-point correlation function:

\[ \xi_(r_p, \pi) = \xi_0(s) + \xi_2(s) \mathcal{L}_2(\mu)+ \xi_4(s) \mathcal{L}_4(\mu) \]

where \(xi_0(s), \xi_2(s), \xi_4(s)\) are the two-point correlation function monopoles and \( \mathcal{L}_l(\mu)\) are the Legendre polynomial.

Parameters
rpvector of scales transverse to the line of sight
pivector of scales parallel to the line of sight
modelthe \(P(k,\mu)\) model
parametervector containing parameter values
pk_interpvector containing power spectrum interpolating functions
precthe integral precision
alpha_perpthe shift transverse to the l.o.s.
alpha_parthe shift parallel to the l.o.s.
Returns
the cartesian two-point correlation function.

Definition at line 512 of file ModelFunction_TwoPointCorrelation.cpp.

◆ xi_Wedges() [1/2]

std::vector< std::vector< double > > cbl::modelling::twopt::xi_Wedges ( const std::vector< double >  rr,
const int  nWedges,
const std::vector< std::vector< double >>  mu_integral_limits,
const std::string  model,
const std::vector< double >  parameter,
const std::vector< std::shared_ptr< glob::FuncGrid >>  pk_interp,
const double  prec = 1.e-5,
const double  alpha_perp = 1,
const double  alpha_par = 1. 
)

the model wedges of the two-point correlation function

this function computes the wedges of the two-point correlation function either with the de-wiggled model or with the mode-coupling model (Kazin et al. 2012):

\[ \xi(\Delta \mu, s) = \xi_0(s)+\frac{1}{2} \left( \frac{ \mu_{max}^3- \mu_{min}^3}{\mu_{max}-\mu_{min}} -1 \right)\xi_2(s)+ \frac{1}{8} \left( \frac{ 7 \left(\mu_{max}^5-\mu_{min}^5\right)-10 \left(\mu_{max}^3- \mu_{min}^3 \right)}{\mu_{max}-\mu_{min}}+3 \right) \xi_4(s). \]

where \(\xi_0(s), \xi_2(s), \xi_4(s)\) are the two-point correlation function multipoles computed by cbl::modelling::twopt::Xi_l

Parameters
rrvector of scales to compute wedges
nWedgesthe number of wedges
mu_integral_limitsthe \(\mu\) integral limits used to measure the wedges
modelthe \(P(k,\mu)\) model; the possible options are: dispersion_dewiggled, dispersion_modecoupling
parametervector containing parameter values
pk_interpvector containing power spectrum interpolating functions
precthe integral precision
alpha_perpthe shift transverse to the l.o.s.
alpha_parthe shift parallel to the l.o.s.
Returns
the wedges of the two-point correlation function.

Definition at line 70 of file ModelFunction_TwoPointCorrelation_wedges.cpp.

◆ xi_Wedges() [2/2]

std::vector< double > cbl::modelling::twopt::xi_Wedges ( const std::vector< double >  rr,
const std::vector< int >  dataset_order,
const std::vector< std::vector< double >>  mu_integral_limits,
const std::string  model,
const std::vector< double >  parameter,
const std::vector< std::shared_ptr< glob::FuncGrid >>  pk_interp,
const double  prec = 1.e-5,
const double  alpha_perp = 1.,
const double  alpha_par = 1. 
)

the wedge of the two-point correlation function

The function computes the wedges of the two-point correlation function (Kazin et al. 2012):

\[ \xi(\Delta \mu, s) = \xi_0(s)+\frac{1}{2} \left( \frac{ \mu_{max}^3- \mu_{min}^3}{\mu_{max}-\mu_{min}} -1 \right)\xi_2(s)+ \frac{1}{8} \left( \frac{ 7 \left(\mu_{max}^5-\mu_{min}^5\right)-10 \left(\mu_{max}^3- \mu_{min}^3 \right)}{\mu_{max}-\mu_{min}}+3 \right) \xi_4(s). \]

where \(\xi_0(s), \xi_2(s), \xi_4(s)\) are the two-point correlation function multipoles

Parameters
rrvector of scales to compute wedges
dataset_ordervector that specify the wedges to be computed for each scale
mu_integral_limitsthe \(\mu\) integral limits used to measure the wedges
modelthe \(P(k,\mu)\) model; the possible options are: dispersion_dewiggled, dispersion_modecoupling
parametervector containing parameter values
pk_interpvector containing power spectrum interpolating functions
precthe integral precision
alpha_perpthe shift transverse to the l.o.s.
alpha_parthe shift parallel to the l.o.s.
Returns
the wedges of the two-point correlation function.

Definition at line 47 of file ModelFunction_TwoPointCorrelation_wedges.cpp.

◆ xi_zspace()

double cbl::modelling::twopt::xi_zspace ( FunctionVectorVectorPtrVectorRef  func,
const double  rp,
const double  pi,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

function used to compute the redshift-space monopole of the two-point correlation function

this function is used to compute the redshift-space spherically averaged correlation function with a modified version of the Kaiser model (sec. 2.3 of van den Bosch et al. 2012); it is used to derive the model projected correlation function accounting for residual redshift-space distortions caused by finite integration range

\[\xi(r_p, \pi, z) = \sum_{l=0}^2\xi_{2l}(r, z)\mathcal{P}_{2l}(\mu)\]

where

\[\xi_0(r, z) = \left(1 + \frac{2}{3}\beta + \frac{1}{5}\beta^2\right)\xi(r, z)\,,\]

\[\xi_2(r, z) = \left(\frac{2}{3}\beta + \frac{4}{7}\beta^2\right)\left[\xi(r, z)-3J_3(r, z)\right]\,,\]

\[\xi_4(r, z) = \frac{8}{35}\beta^2\left[\xi(r, z)+\frac{15}{2}J_3(r, z)-\frac{35}{2}J_5(r, z)\right]\,,\]

\[J_n(r, z) = \frac{1}{r^n}\int_0^r\xi(y, z)y^{n-1}{\rm d}y\]

the real-space galaxy correlation function \(\xi(r, z)\) is either the 1-halo, the 2-halo, or the full-shape real-space correlation function, computed by either cbl::modelling::twopt::xi_1halo, cbl::modelling::twopt::xi_2halo, or cbl::modelling::twopt::xi_HOD, respectively

Parameters
functhe two-point correlation function that will be integrated (it can be either the 1-halo, the 2-halo, or the full-shape correlation function)
rpthe scale perpendicular to the line of sight at which the model is computed
pithe scale parallel to the line of sight at which the model is computed
inputspointer to the structure that contains the fixed input data used to construct the model
parametervector containing the model parameters
Returns
the redshift-space monopole of the two-point correlation function

Definition at line 1232 of file ModelFunction_TwoPointCorrelation1D_monopole.cpp.

◆ Xil_interp()

cbl::glob::FuncGrid cbl::modelling::twopt::Xil_interp ( const std::vector< double >  kk,
const int  l,
const std::string  model,
const std::vector< double >  parameter,
const std::vector< std::shared_ptr< glob::FuncGrid >>  pk_interp,
const double  prec = 1.e-5,
const double  alpha_perp = 1.,
const double  alpha_par = 1. 
)

the interpolating function of multipole expansion of the two-point correlation function at a given order l

The function computes the multipoles of the two-point correlation function:

\[ \xi_l(s) = i^l \int \frac{\mathrm{d} k}{2\pi^2} k^2 P_l(k) j_l(ks) \]

where \(j_l(ks)\) are the Bessel functions, and \(P_l(k)\) is computed by cbl::modelling::twopt::Pk_l

Parameters
kkthe wave vector module vector
lthe order of the expansion
modelthe \(P(k,\mu)\) model
parametervector containing parameter values
pk_interpvector containing power spectrum interpolating functions
precthe integral precision
alpha_perpthe shift transverse to the l.o.s.
alpha_parthe shift parallel to the l.o.s.
Returns
the interpolation function of the multipole expansion of two-point correlation function at a given order l

Definition at line 437 of file ModelFunction_TwoPointCorrelation.cpp.

◆ xiMultipoles()

std::vector< double > cbl::modelling::twopt::xiMultipoles ( const std::vector< double >  rad,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

return multipoles of the two-point correlation function

The functions computes the multipoles of the two-point correlation function

\[ \xi_l(s) = i^l \int \frac{\mathrm{d} k}{2\pi^2} k^2 P_l(k) j_l(ks); \]

where \(j_l(ks)\) are the Bessel functions.

The function takes as inputs four fundamental parameters

  • \(\alpha_{\perp}\)
  • \(\alpha_{\parallel}\)
  • \(f(z)\sigma_8(z)\)
  • \(b(z)\sigma_8(z)\)
  • \( \Sigma_S \)
Parameters
radthe scale at which the model is computed
inputspointer to the structure that contains the data required to construct the model
parameter4D vector containing the input parameters
Returns
the multipoles of the two-point correlation function

Definition at line 48 of file ModelFunction_TwoPointCorrelation_multipoles.cpp.

◆ xiMultipoles_BAO()

std::vector< double > cbl::modelling::twopt::xiMultipoles_BAO ( const std::vector< double >  rad,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

return multipoles of the two-point correlation function, intended for anisotropic BAO measurements (Ross et al. 2017). In only works with monopole and quadrupole.

The functions computes the multipoles of the two-point correlation function:

\[ \xi_0(s) = B_0\xi_0(s, \alpha_{\perp}, \alpha_{\parallel})+A_0^0+\frac{A_0^1}{s}+\frac{A_0^2}{s^2} \]

\[ \xi_2(s) = \frac{5}{2}\left[B_2\xi_{\mu2}(s, \alpha_{\perp}, \alpha_{\parallel})-B_0\xi_0(s, \alpha_{\perp}, \alpha_{\parallel})\right] +A_2^0+\frac{A_2^1}{s}+\frac{A_2^2}{s^2} \]

where \(\xi_0(s, \alpha_{\perp}, \alpha_{\parallel})\) is the monopole computed at the fiducial cosmology, \(\xi_{\mu2}(s, \alpha_{\perp}, \alpha_{\parallel}) = 3\int_0^1\mathrm{d}\mu\mu^2\xi(s, \mu, \alpha_{\perp}, \alpha_{\parallel})\).

The function takes as inputs ten parameters

  • \(\alpha_{\perp}\)
  • \(\alpha_{\parallel}\)
  • \(B_0\)
  • \(B_2\)
  • \(A^0_0\)
  • \(A^0_1\)
  • \(A^0_2\)
  • \(A^2_0\)
  • \(A^2_1\)
  • \(A^2_2\)
Parameters
radthe scale at which the model is computed
inputspointer to the structure that contains the data required to construct the model
parameter10D vector containing the input parameters
Returns
the multipoles of the two-point correlation function

Definition at line 192 of file ModelFunction_TwoPointCorrelation_multipoles.cpp.

◆ xiMultipoles_sigma8_bias()

std::vector< double > cbl::modelling::twopt::xiMultipoles_sigma8_bias ( const std::vector< double >  rad,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

return multipoles of the two-point correlation function

The functions computes the multipoles of the two-point correlation function

\[ \xi_l(s) = i^l \int \frac{\mathrm{d} k}{2\pi^2} k^2 P_l(k) j_l(ks); \]

where \(j_l(ks)\) are the Bessel functions.

The function takes as inputs 2 parameters

  • \(\sigma_8(z)\)
  • \(b(z)\)
Parameters
radthe scale at which the model is computed
inputspointer to the structure that contains the data required to construct the model
parametervector containing the input parameters
Returns
the multipoles of the two-point correlation function

Definition at line 157 of file ModelFunction_TwoPointCorrelation_multipoles.cpp.

◆ xiWedges()

std::vector< double > cbl::modelling::twopt::xiWedges ( const std::vector< double >  rad,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

the model wedges of the two-point correlation function

this functions computes the wedges of the two-point either with the de-wiggled model or with the mode-coupling model; specifically, the wedges are computed by cbl::modelling::twopt::xi_Wedges

the wedges of the two-point correlation functions are defined as follows:

\[ \xi_w(s) = \frac{1}{\mu_{max}-\mu_{min}} \int_{\mu_{min}}^{\mu_{max}} \mathrm{\mu} \xi(s', \mu'); \]

where \( \xi(s', \mu')\) is the polar two-point correlation function computed at shifted positions \(s' = s\sqrt{\mu^2\alpha^2_{\parallel}+(1-\mu^2)\alpha^2_{\perp}}\), \(\mu' = \mu\alpha_{\parallel}/\sqrt{\mu^2\alpha^2_{\parallel}+(1-\mu^2)\alpha^2_{\perp}}\)

Parameters
radthe scale at which the model is computed
inputspointer to the structure that contains the de-wiggled power spectrum, the number of wedges and \(\sigma_8(z)\), computed at a given (fixed) cosmology
parametervector containing the input parameters
Returns
the wedges of the two-point correlation function

Definition at line 94 of file ModelFunction_TwoPointCorrelation_wedges.cpp.

◆ xiWedges_BAO()

std::vector< double > cbl::modelling::twopt::xiWedges_BAO ( const std::vector< double >  rad,
const std::shared_ptr< void >  inputs,
std::vector< double > &  parameter 
)

return the wedges of the two-point correlation function, intended for anisotropic BAO measurements

the wedges of the two-point correlation function are computed as follows (Ross et al. 2017):

\[ \xi_{\perp}(s) = B_{\perp}\xi_{\perp}(s, \alpha_{\perp}, \alpha_{\parallel})+A_{\perp}^0+\frac{A_{\perp}^1}{s}+\frac{A_{\perp}^2}{s^2}; \\ \xi_{\parallel}(s) = B_{\parallel}\xi_{\parallel}(s, \alpha_{\parallel}, \alpha_{\parallel})+A_{\parallel}^0+\frac{A_{\parallel}^1}{s}+\frac{A_{\parallel}^2}{s^2}; \\ \]

where \(\xi_{\perp}\), \(\xi_{\parallel}\) are the two wedges of the two-point correlation function.

The function takes as inputs ten parameters

  • \(\alpha_{\perp}\)
  • \(\alpha_{\parallel}\)
  • \(B_0\)
  • \(B_2\)
  • \(A^0_0\)
  • \(A^0_1\)
  • \(A^0_2\)
  • \(A^2_0\)
  • \(A^2_1\)
  • \(A^2_2\)
Parameters
radthe scale at which the model is computed
inputspointer to the structure that contains the de-wiggled power spectrum, the number of wedges and \(\sigma_8(z)\), computed at a given (fixed) cosmology
parameter10D vector containing the input parameters
Returns
the wedges of the two-point correlation function

Definition at line 203 of file ModelFunction_TwoPointCorrelation_wedges.cpp.