49 m_parameter_priors.erase(m_parameter_priors.begin(), m_parameter_priors.end());
50 for (
size_t i=0; i<prior_distribution.size(); i++)
51 m_parameter_priors.emplace_back(make_shared<statistics::PriorDistribution>(prior_distribution[i]));
60 if ((m_likelihood!=NULL && m_parameter_priors.size()==m_model->parameters()->nparameters_base()) || m_model->parameters()->nparameters_correlated()>0)
61 m_posterior = make_shared<statistics::Posterior>(
statistics::Posterior(m_parameter_priors, *m_likelihood, seed));
63 ErrorCBL(
"either the posterior is not defined or a wrong number of prior distributions has been provided!",
"m_set_posterior",
"Modelling.cpp");
65 m_posterior->set_response_function(m_response_func);
74 if (m_likelihood!=NULL)
77 ErrorCBL(
"the likelihood is not defined!",
"likelihood",
"Modelling.cpp");
87 if (m_posterior!=NULL)
90 ErrorCBL(
"the posterior is not defined!",
"posterior",
"Modelling.cpp");
100 if (m_likelihood!=NULL)
101 return m_likelihood->parameters();
103 ErrorCBL(
"the likelihood is not defined!",
"likelihood_parameters",
"Modelling.cpp");
113 if (m_posterior!=NULL)
114 return m_posterior->parameters();
116 ErrorCBL(
"the posterior is not defined!",
"posterior_parameters",
"Modelling.cpp");
127 ErrorCBL(
"undefined model!",
"set_likelihood",
"Modelling.cpp");
130 if (m_data_fit==NULL)
131 ErrorCBL(
"undefined fit range!",
"set_likelihood",
"Modelling.cpp");
132 m_likelihood = make_shared<statistics::Likelihood> (
statistics::Likelihood(m_data_fit, m_model, likelihood_type, x_index, w_index, NULL, prec, Nres));
137 ErrorCBL(
"Error in set_likelihood of Modelling.cpp. Undefined dataset!",
"set_likelihood",
"Modelling.cpp");
138 m_likelihood = make_shared<statistics::Likelihood> (
statistics::Likelihood(m_data, m_model, likelihood_type, x_index, w_index, NULL, prec, Nres));
149 ErrorCBL(
"undefined model!",
"set_likelihood",
"Modelling.cpp");
152 if (m_data_fit==NULL)
153 ErrorCBL(
"undefined fit range!",
"set_likelihood",
"Modelling.cpp");
154 m_likelihood = make_shared<statistics::Likelihood> (
statistics::Likelihood(m_data_fit, m_model, log_likelihood_function, NULL));
159 ErrorCBL(
"Error in set_likelihood of Modelling.cpp. Undefined dataset!",
"set_likelihood",
"Modelling.cpp");
160 m_likelihood = make_shared<statistics::Likelihood> (
statistics::Likelihood(m_data, m_model, log_likelihood_function, NULL));
170 m_likelihood->maximize(start, parameter_ranges, max_iter, tol, epsilon);
179 m_set_posterior(seed);
180 m_posterior->maximize(start, max_iter, tol, epsilon);
189 m_set_posterior(seed);
190 m_posterior->initialize_chains(chain_size, nwalkers);
191 m_posterior->sample_stretch_move(aa, parallel);
197 void cbl::modelling::Modelling::sample_posterior (
const int chain_size,
const int nwalkers,
const double radius,
const std::vector<double> start,
const unsigned int max_iter,
const double tol,
const double epsilon,
const int seed,
const double aa,
const bool parallel)
199 m_set_posterior(seed);
200 m_posterior->initialize_chains(chain_size, nwalkers, radius, start, max_iter, tol, epsilon);
201 m_posterior->sample_stretch_move(aa, parallel);
209 m_set_posterior(seed);
210 m_posterior->initialize_chains(chain_size, nwalkers, value, radius);
211 m_posterior->sample_stretch_move(aa, parallel);
220 m_set_posterior(seed);
221 m_posterior->initialize_chains(chain_size, chain_value);
222 m_posterior->sample_stretch_move(aa, parallel);
231 m_set_posterior(seed);
232 m_posterior->initialize_chains(chain_size, nwalkers, input_dir, input_file);
233 m_posterior->sample_stretch_move(aa, parallel);
240 void cbl::modelling::Modelling::importance_sampling (
const std::string input_dir,
const std::string input_file,
const int seed,
const vector<size_t> column,
const int header_lines_to_skip,
const bool is_FITS_format,
const bool apply_to_likelihood)
242 m_set_posterior(seed);
243 m_posterior->importance_sampling(input_dir, input_file, column, header_lines_to_skip, is_FITS_format, apply_to_likelihood);
252 m_posterior->write_chain(output_dir, output_file, start, thin, is_FITS_format, prec, ww);
261 m_set_posterior(666);
262 m_posterior->read_chain(input_dir, input_file, nwalkers, columns, skip_header, fits);
271 if (m_data_fit==NULL)
272 ErrorCBL(
"undefined fit range!",
"show_results",
"Modelling.cpp");
274 m_posterior->show_results(start, thin, nbins, show_mode, ns, m_data_fit->ndata());
283 if (m_data_fit==NULL)
284 ErrorCBL(
"undefined fit range!",
"write_results",
"Modelling.cpp");
286 m_posterior->write_results(dir, file, start, thin, nbins, fits, compute_mode, ns, m_data_fit->ndata());
295 if (m_posterior==NULL) m_set_posterior(666);
297 return m_posterior->chi2(parameter)/(m_data_fit->ndata()-m_posterior->parameters()->nparameters_free());
void write_results(const std::string output_dir, const std::string root_file, const int start=0, const int thin=1, const int nbins=50, const bool fits=false, const bool compute_mode=false, const int ns=-1)
write the results of the MCMC sampling to file
double reduced_chi2(const std::vector< double > parameter={})
the reduced
void importance_sampling(const std::string input_dir, const std::string input_file, const int seed=666, const std::vector< size_t > column={}, const int header_lines_to_skip=1, const bool is_FITS_format=false, const bool apply_to_likelihood=false)
perform importance sampling
std::shared_ptr< statistics::ModelParameters > likelihood_parameters()
return the likelihood parameters
void maximize_likelihood(const std::vector< double > start, const std::vector< std::vector< double >> parameter_limits, const unsigned int max_iter=10000, const double tol=1.e-6, const double epsilon=1.e-3)
function that maximizes the posterior, finds the best-fit parameters and stores them in the model
void write_chain(const std::string output_dir, const std::string output_file, const int start=0, const int thin=1, const bool is_FITS_format=false, const int prec=5, const int ww=14)
write the chains obtained after the MCMC sampling
void m_set_prior(std::vector< statistics::PriorDistribution > prior_distribution)
set the internal variable m_parameter_priors
void show_results(const int start=0, const int thin=1, const int nbins=50, const bool show_mode=false, const int ns=-1)
show the results of the MCMC sampling on screen
void read_chain(const std::string input_dir, const std::string input_file, const int nwalkers, const std::vector< size_t > columns={}, const int skip_header=1, const bool fits=false)
read the chains
void m_set_posterior(const int seed)
set the interal variable m_posterior
void set_likelihood(const statistics::LikelihoodType likelihood_type, const std::vector< size_t > x_index={0, 2}, const int w_index=-1, const double prec=1.e-10, const int Nres=-1)
set the likelihood function
std::shared_ptr< statistics::Posterior > posterior()
return the posterior parameters
void sample_posterior(const int chain_size, const int nwalkers, const int seed=666, const double aa=2, const bool parallel=true)
sample the posterior, initializing the chains by drawing from the prior distributions
std::shared_ptr< statistics::Likelihood > likelihood()
return the likelihood parameters
std::shared_ptr< statistics::ModelParameters > posterior_parameters()
return the posterior parameters
void maximize_posterior(const std::vector< double > start, const unsigned int max_iter=10000, const double tol=1.e-6, const double epsilon=1.e-3, const int seed=666)
function that maximizes the posterior, finds the best-fit parameters and stores them in the model
LikelihoodType
the type of likelihood function
std::function< double(std::vector< double > &, const std::shared_ptr< void >)> Likelihood_function
definition of a function for computation of the Likelihood
The global namespace of the CosmoBolognaLib
int ErrorCBL(const std::string msg, const std::string functionCBL, const std::string fileCBL, const cbl::glob::ExitCode exitCode=cbl::glob::ExitCode::_error_)
throw an exception: it is used for handling exceptions inside the CosmoBolognaLib