try {
std::string file_catalogue = "../input/cat.dat";
const double N_R = 2.;
const double side_s = 20.;
const double side_u = 2.;
const double perc = 0.0225;
const int nbins = 5;
const std::string dir_output = "../output/";
const std::string dir_triplets = dir_output;
const std::string dir_2pt = dir_output;
const std::string file_output = "3pt.dat";
ThreeP->measure(dir_triplets, dir_2pt);
ThreeP->write(dir_output, file_output, 1);
const std::string file_Q = "../input/zeta_lin_DM_z1.1_u2s5.00.dat";
double theta, Q, err;
std::vector<double> Q_DM;
while (fin >> theta >> Q >> err)
Q_DM.emplace_back(Q);
fin.clear(); fin.close();
const double theta_min = 0.;
const double theta_max = 1.;
const int chain_size = 1000;
const int nwalkers = 10;
const int seed = 666;
const int burn_in = 100;
const int thin = 10;
model_threep.
write_results(dir_output,
"model_Q", burn_in, thin);
}
return 0;
}
int main()
main function to create the logo of the CosmoBolognaLib
The class Modelling_ThreePointCorrelation_comoving_reduced.
const char * what() const noexcept override
the error description
static std::shared_ptr< ThreePointCorrelation > Create(const ThreePType type, const catalogue::Catalogue data, const catalogue::Catalogue random, const triplets::TripletType tripletType, const double side_s, const double side_u, const double perc_increase, const int nbins)
static factory used to construct three-point correlation functions of any type
void write_results(const std::string output_dir, const std::string root_file, const int start=0, const int thin=1, const int nbins=50, const bool fits=false, const bool compute_mode=false, const int ns=-1)
write the results of the MCMC sampling to file
void show_results(const int start=0, const int thin=1, const int nbins=50, const bool show_mode=false, const int ns=-1)
show the results of the MCMC sampling on screen
void set_likelihood(const statistics::LikelihoodType likelihood_type, const std::vector< size_t > x_index={0, 2}, const int w_index=-1, const double prec=1.e-10, const int Nres=-1)
set the likelihood function
void sample_posterior(const int chain_size, const int nwalkers, const int seed=666, const double aa=2, const bool parallel=true)
sample the posterior, initializing the chains by drawing from the prior distributions
void set_fit_range(const double xmin, const double xmax)
set the fit range
The class Modelling_ThreePointCorrelation_comoving_reduced.
void set_model_nonlinear_localbias(const statistics::PriorDistribution bias1_prior={}, const statistics::PriorDistribution bias2_prior={})
set the parameters used to model the reduced three-point correlation function in comoving coordinates
void set_data_model(const std::vector< double > Q_DM)
set the data model for the three-point correlation function
The class PriorDistribution.
@ _createRandom_box_
random catalogue with cubic geometry (or parallelepiped) in comoving coordinates
@ _Planck15_
Planck collaboration 2015, paper XIII: Table 4, TT,TE,EE+lowP+lensing.
@ _Uniform_
Identity function.
@ _comoving_reduced_
the reduced three-point correlation function in comoving coordinates
@ _Gaussian_Error_
Gaussian likelihood error.
@ _comoving_theta_
1D triplet in comoving coordinates and angular bins
@ _observed_
observed coordinates (R.A., Dec, redshift)
void checkIO(const std::ifstream &fin, const std::string file="NULL")
check if an input file can be opened