CosmoBolognaLib
Free Software C++/Python libraries for cosmological calculations
cbl::modelling::numbercounts::Modelling_NumberCounts1D Class Reference

The class Modelling_NumberCounts1D. More...

#include <Modelling_NumberCounts1D.h>

Inheritance diagram for cbl::modelling::numbercounts::Modelling_NumberCounts1D:
Collaboration diagram for cbl::modelling::numbercounts::Modelling_NumberCounts1D:

Public Member Functions

Constructors/destructors
 Modelling_NumberCounts1D ()=default
 default constuctor
 
 Modelling_NumberCounts1D (const std::shared_ptr< cbl::measure::numbercounts::NumberCounts > nc)
 constuctor More...
 
 Modelling_NumberCounts1D (const std::shared_ptr< cbl::data::Data > dataset, glob::HistogramType hist_type, double fact)
 constuctor More...
 
virtual ~Modelling_NumberCounts1D ()=default
 default destructor
 
- Public Member Functions inherited from cbl::modelling::numbercounts::Modelling_NumberCounts
void set_data_model_SF (const cosmology::Cosmology cosmology, const std::vector< double > radii, const double redshift, const std::string model, const double b_eff, double slope=0.854, double offset=0.420, const double deltav_NL=-0.795, const double del_c=1.69, const std::string method_Pk="EisensteinHu", const double k_Pk_ratio=-1., const bool store_output=true, const std::string output_root="test", const std::string interpType="Linear", const double k_max=100., const std::string input_file=par::defaultString, const bool is_parameter_file=true)
 Member functions used to set the model parameters. More...
 
virtual void set_data_model_snapshot (const cbl::cosmology::Cosmology cosmology={}, const double redshift=0., const std::string method_Pk="CAMB", const double k_min=1.e-4, const double k_max=100., const int step=500, const bool store_output=true, const int norm=-1, const double Delta=200., const bool isDelta_critical=true, const std::string model_MF="Tinker", const double Volume=par::defaultDouble, const double Mass_min=par::defaultDouble, const double Mass_max=par::defaultDouble, const int Mass_step=100, const double prec=1.e-4)
 set the data used to construct mass number counts of simulation snapshots More...
 
 Modelling_NumberCounts ()=default
 default constuctor _NumberCounts
 
 Modelling_NumberCounts (const std::shared_ptr< cbl::measure::numbercounts::NumberCounts > nc)
 constuctor More...
 
 Modelling_NumberCounts (glob::HistogramType hist_type, double fact)
 constuctor More...
 
virtual ~Modelling_NumberCounts ()=default
 default destructor
 
modelling::numbercounts::STR_NC_data_model data_model ()
 get the member m_data_model More...
 
modelling::numbercounts::STR_NCSF_data_model data_model_SF ()
 get the member m_data_model_SF More...
 
void set_data_model (const cbl::cosmology::Cosmology cosmology={}, const double redshift=0., const std::string method_Pk="CAMB", const double k_min=1.e-4, const double k_max=100., const int step=500, const bool store_output=true, const int norm=-1, const double Delta=200., const bool isDelta_critical=true, const std::string model_MF="Tinker", const std::string selection_function_file=par::defaultString, const std::vector< int > selection_function_column={}, const double z_min=par::defaultDouble, const double z_max=par::defaultDouble, const int z_step=50, const double Mass_min=par::defaultDouble, const double Mass_max=par::defaultDouble, const int Mass_step=100, const double area_degrees=par::defaultDouble, const double prec=1.e-4)
 set the data used to construct generic models of number counts More...
 
void set_data_model (const cbl::cosmology::Cosmology cosmology, const std::vector< double > SF_weights, const double z_pivot, const double proxy_pivot, const double mass_pivot, const double log_base, const std::string method_Pk, const bool store_output=true, const int norm=-1, const double Delta=200., const bool isDelta_critical=true, const std::string model_MF="Tinker", const std::string model_bias="Tinker", const double z_min=par::defaultDouble, const double z_max=par::defaultDouble, const double area_degrees=par::defaultDouble, const double prec=1.e-4)
 set the data used to construct a model of number counts as a function of a mass proxy, here expressed as \(\lambda\), with the following functional form: More...
 
- Public Member Functions inherited from cbl::modelling::Modelling
void m_set_posterior (const int seed)
 set the interal variable m_posterior More...
 
 Modelling ()=default
 default constuctor
 
virtual ~Modelling ()=default
 default destructor
 
std::shared_ptr< data::Datadata ()
 return the dataset More...
 
std::shared_ptr< data::Datadata_fit ()
 return the dataset More...
 
std::shared_ptr< statistics::Likelihoodlikelihood ()
 return the likelihood parameters More...
 
std::shared_ptr< statistics::Posteriorposterior ()
 return the posterior parameters More...
 
std::shared_ptr< statistics::ModelParameterslikelihood_parameters ()
 return the likelihood parameters More...
 
std::shared_ptr< statistics::ModelParametersposterior_parameters ()
 return the posterior parameters More...
 
virtual void set_parameter_from_string (const std::string parameter, const double value)
 set the value of a parameter providing its name string More...
 
virtual double get_parameter_from_string (const std::string parameter) const
 get the value of a parameter providing its name string More...
 
std::shared_ptr< statistics::PriorDistributionget_prior (const int i)
 get the internal variable m_parameter_priors More...
 
std::shared_ptr< statistics::Modelget_response_function ()
 return the response function used to compute the super-sample covariance More...
 
void reset_fit_range ()
 reset the fit range More...
 
void set_fit_range (const double xmin, const double xmax)
 set the fit range More...
 
void set_fit_range (const double xmin, const double xmax, const double ymin, const double ymax)
 set the fit range More...
 
void set_data (const std::shared_ptr< data::Data > dataset)
 set the dataset More...
 
void set_likelihood (const statistics::LikelihoodType likelihood_type, const std::vector< size_t > x_index={0, 2}, const int w_index=-1, const double prec=1.e-10, const int Nres=-1)
 set the likelihood function More...
 
void set_likelihood (const cbl::statistics::Likelihood_function log_likelihood_function)
 set the likelihood function, given a user-defined log-likelihood function More...
 
void maximize_likelihood (const std::vector< double > start, const std::vector< std::vector< double >> parameter_limits, const unsigned int max_iter=10000, const double tol=1.e-6, const double epsilon=1.e-3)
 function that maximizes the posterior, finds the best-fit parameters and stores them in the model More...
 
void maximize_posterior (const std::vector< double > start, const unsigned int max_iter=10000, const double tol=1.e-6, const double epsilon=1.e-3, const int seed=666)
 function that maximizes the posterior, finds the best-fit parameters and stores them in the model More...
 
void sample_posterior (const int chain_size, const int nwalkers, const int seed=666, const double aa=2, const bool parallel=true)
 sample the posterior, initializing the chains by drawing from the prior distributions More...
 
void sample_posterior (const int chain_size, const int nwalkers, const double radius, const std::vector< double > start, const unsigned int max_iter=10000, const double tol=1.e-6, const double epsilon=1.e-3, const int seed=666, const double aa=2, const bool parallel=true)
 sample the posterior, initializing the chains in a ball around the posterior best-fit parameters values More...
 
void sample_posterior (const int chain_size, const int nwalkers, std::vector< double > &value, const double radius, const int seed=666, const double aa=2, const bool parallel=true)
 sample the posterior, initializing the chains by drawing from the prior distributions More...
 
void sample_posterior (const int chain_size, const std::vector< std::vector< double >> chain_value, const int seed=666, const double aa=2, const bool parallel=true)
 sample the posterior, initializing the chains with input values More...
 
void sample_posterior (const int chain_size, const int nwalkers, const std::string input_dir, const std::string input_file, const int seed=666, const double aa=2, const bool parallel=true)
 sample the posterior, initializing the chains reading the input values from an input file More...
 
void importance_sampling (const std::string input_dir, const std::string input_file, const int seed=666, const std::vector< size_t > column={}, const int header_lines_to_skip=1, const bool is_FITS_format=false, const bool apply_to_likelihood=false)
 perform importance sampling More...
 
void write_chain (const std::string output_dir, const std::string output_file, const int start=0, const int thin=1, const bool is_FITS_format=false, const int prec=5, const int ww=14)
 write the chains obtained after the MCMC sampling More...
 
void read_chain (const std::string input_dir, const std::string input_file, const int nwalkers, const std::vector< size_t > columns={}, const int skip_header=1, const bool fits=false)
 read the chains More...
 
void show_results (const int start=0, const int thin=1, const int nbins=50, const bool show_mode=false, const int ns=-1)
 show the results of the MCMC sampling on screen More...
 
void write_results (const std::string output_dir, const std::string root_file, const int start=0, const int thin=1, const int nbins=50, const bool fits=false, const bool compute_mode=false, const int ns=-1)
 write the results of the MCMC sampling to file More...
 
virtual void write_model (const std::string output_dir, const std::string output_file, const std::vector< double > xx, const std::vector< double > parameters)
 write the model at xx for given parameters More...
 
virtual void write_model (const std::string output_dir, const std::string output_file, const std::vector< double > xx, const std::vector< double > yy, const std::vector< double > parameters)
 write the model at xx, yy for given parameters More...
 
virtual void write_model_at_bestfit (const std::string output_dir, const std::string output_file, const std::vector< double > xx)
 write the model at xx with best-fit parameters obtained from posterior maximization More...
 
virtual void write_model_at_bestfit (const std::string output_dir, const std::string output_file, const std::vector< double > xx, const std::vector< double > yy)
 write the model at xx, yy with best-fit parameters obtained from likelihood maximization More...
 
virtual void write_model_from_chains (const std::string output_dir, const std::string output_file, const std::vector< double > xx, const int start=0, const int thin=1)
 write the model at xx computing 16th, 50th and 84th percentiles from the chains More...
 
virtual void write_model_from_chains (const std::string output_dir, const std::string output_file, const std::vector< double > xx, const std::vector< double > yy, const int start=0, const int thin=1)
 write the model at xx, yy computing 16th, 50th and 84th percentiles from the chains More...
 
double reduced_chi2 (const std::vector< double > parameter={})
 the reduced \(\chi^2\) More...
 

Additional Inherited Members

- Protected Member Functions inherited from cbl::modelling::Modelling
void m_set_prior (std::vector< statistics::PriorDistribution > prior_distribution)
 set the internal variable m_parameter_priors More...
 
void m_isSet_response ()
 check if the response function used to compute the super-sample covariance is set
 
- Protected Attributes inherited from cbl::modelling::numbercounts::Modelling_NumberCounts
glob::HistogramType m_HistogramType
 the histogram type
 
double m_fact
 the normalization factor
 
modelling::numbercounts::STR_NC_data_model m_data_model
 the container of parameters for number counts model computation
 
modelling::numbercounts::STR_NCSF_data_model m_data_model_SF
 the container of parameters for size number counts model computation
 
- Protected Attributes inherited from cbl::modelling::Modelling
std::shared_ptr< data::Datam_data = NULL
 input data to be modelled
 
bool m_fit_range = false
 check if fit range has been set
 
std::shared_ptr< data::Datam_data_fit
 input data restricted to the range used for the fit
 
std::shared_ptr< statistics::Modelm_model = NULL
 input model
 
std::shared_ptr< statistics::Modelm_response_func = NULL
 response function for the computation of the super-sample covariance
 
std::shared_ptr< statistics::Likelihoodm_likelihood = NULL
 likelihood
 
std::vector< std::shared_ptr< statistics::PriorDistribution > > m_parameter_priors
 prior
 
std::shared_ptr< statistics::Posteriorm_posterior = NULL
 posterior
 

Detailed Description

The class Modelling_NumberCounts1D.

"Headers/Modelling_NumberCounts1D.h"

This file defines the interface of the base class Modelling_NumberCounts1D, used for modelling 1D number counts measurements

Definition at line 67 of file Modelling_NumberCounts1D.h.

Constructor & Destructor Documentation

◆ Modelling_NumberCounts1D() [1/2]

cbl::modelling::numbercounts::Modelling_NumberCounts1D::Modelling_NumberCounts1D ( const std::shared_ptr< cbl::measure::numbercounts::NumberCounts nc)
inline

constuctor

Parameters
ncthe number counts to model

Definition at line 86 of file Modelling_NumberCounts1D.h.

◆ Modelling_NumberCounts1D() [2/2]

cbl::modelling::numbercounts::Modelling_NumberCounts1D::Modelling_NumberCounts1D ( const std::shared_ptr< cbl::data::Data dataset,
glob::HistogramType  hist_type,
double  fact 
)
inline

constuctor

Parameters
datasetthe number counts dataset
hist_typethe histogram type
factthe normalization factor

Definition at line 95 of file Modelling_NumberCounts1D.h.


The documentation for this class was generated from the following file: